

Efectos del cambio climático en la costa de América Latina y el Caribe

VULNERABILIDAD Y EXPOSICIÓN

Alicia Bárcena

Secretaria Ejecutiva

Antonio Prado

Secretario Ejecutivo Adjunto

Joseluis Samaniego

Director

División de Desarrollo Sostenible y Asentamientos Humanos

Ricardo Pérez

Director

División de Documentos y Publicaciones

Las opiniones expresadas en este documento son de exclusiva responsabilidad de los autores y pueden no coincidir con las de las Organizaciones participantes.

Los límites y los nombres que figuran en los mapas no implican su apoyo o aceptación oficial por las Naciones Unidas. Los Estados miembros y sus instituciones gubernamentales pueden reproducir esta obra sin autorización previa. Sólo se les solicita que mencionen la fuente e informen a las Naciones Unidas de tal reproducción.

Esta publicación puede obtenerse dirigiéndose a:

División de Desarrollo Sostenible y Asentamientos Humanos de la CEPAL, página web: www.cepal.org/ddsah

Foto portada © Gabriel Barajas Ojeda Publicación de las Naciones Unidas

Este documento fue elaborado por el Instituto de Hidráulica Ambiental de la Universidad de Cantabria bajo la dirección del proyecto de Iñigo Losada Rodríguez, la coordinación de Fernando J. Méndez Incera y la participación de los investigadores Borja González Reguero, Sonia Castanedo Bárcena, Gabriel Díaz Hernández, Raúl Medina Santamaría, Pedro Díaz Simal, Bárbara Ondiviela Eizaguirre, Roberto Mínguez Solana, Ana J. Abascal Santillana, Antonio Espejo Hermosa, Cristina Izaguirre Lasa, Paula Camus Braña, Oscar García Aguilar, Pino González-Riancho Calzada, Melisa Menéndez García, José Antonio Juanes de la Peña y Antonio Tomás Sampedro. Por parte de la CEPAL el equipo que coordinó y supervisó el estudio fue Carlos de Miguel, Oficial de Asuntos Ambientales, José Javier Gómez, Oficial de Asuntos Económicos, Karina Martínez y Mauricio Pereira, Asistentes de investigación, todos ellos de la División de Desarrollo Sostenible y Asentamientos Humanos. Este documento forma parte del estudio regional de los efectos del cambio climático en la costa de América Latina y el Caribe, financiado por el Gobierno de España. El estudio se enmarca dentro del Programa Iberoamericano de Adaptación al Cambio Climático (PIACC) siendo una prioridad identificada por los países de la Red Iberoamericana de Oficinas de Cambio Climático (RIOCC).

Se agradece especialmente el apoyo del personal de la Oficina Española de Cambio Climático del Ministerio de Agricultura, Alimentación y Medio Ambiente de España, en particular de Paz Valiente, Ana Pintó, José Ramón Picatoste y Alfonso Gutiérrez.

Además se agradece la colaboración de Felipe Fernández Pérez, Sheila Abad Herrero, Patricia Fernández Quintana, Felipe Maza y Nabil Kakeh Burgada, técnicos del Instituto de Hidráulica de Cantabria, y los comentarios de Rodrigo Cienfuegos, investigador del Departamento de Ingeniería Hidráulica y Ambiental de la Pontificia Universidad Católica de Chile.

Índice

1.	Introducción	15
	1.1. Contexto	15
	1.2. Escalas espaciales de estudio	16
	1.3. Definición de conceptos asociados al riesgo	19
	1.4. Breve descripción de la metodología de riesgo planteada	20
2.	Metodología de evaluación de la vulnerabilidad	25
	2.1. Introducción	25
	2.2. Determinación de las unidades de estudio	27
	2.3. Proceso de cálculo mediante SIG	29
	2.3.1. Metodología	30
	2.4. Información compilada a través de imágenes de satélite	41
	2.5. Índices de vulnerabilidad planteados	
	2.5.1. Índice de vulnerabilidad ecológica, V_{nm}^{ECO}	42
	2.5.2. Vulnerabilidad socioeconómica, V_{nm}^{SE}	55
3.	Información utilizada para la evaluación de la vulnerabilidad y la exposición	63
	3.1. Línea de costa	63
	3.2. Modelo Digital del Terreno (STRM 90m)	63
	3.3. Bases de datos de batimetrías	
	3.4. Usos del suelo (Land Cover, GLCNMO)	66
	3.5. Tipos de suelo (GlobCover)	
	3.6. Áreas protegidas	
	3.7. Grado de amenaza de los ecosistemas	70
	3.8. Densidad de población	71
	3.9. Producto interior bruto (PIB)	72
	3.10. Renta per cápita por países	73
	3.11. CEPALSTAT	75
	3.12. CEPAL	75
	3.13. FAO	82
	3.14. ONU	
	3.15. Datos sobre arrecifes de coral	
	3.16. Datos de turismo (Organización Internacional del Turismo-WTO)	
	3.17. Datos de carreteras y ferrocarriles (DCW)	

	3.18. Res	sumen de los datos utilizados en la evaluación de la vulnerabilidad	86
	4.1. Análi 4.1. 4.1. 4.1. 4.1. 4.1. 4.1.	de la vulnerabilidad y la exposición en América Latina y el Caribe	88 90 95 103 111 117
		isis espacial	
	4.4. Anál fren	icterísticas de las playas en América Latina y el Caribeisis de la vulnerabilidad de las costas de América Latina y el Caribe te al Cambio Climático	147
		1 Cálculo de la vulnerabilidad de la costa ante inundación	
		2 Cálculo de la vulnerabilidad de las playas frente a la erosión	
		4. Vulnerabilidad de los arrecifes de coral	
	4.5. Área	y población afectada en los deltas más importantes de América	
		na y el Caribe	
		clusiones	
5.	Bibliogra	afía	171
Índic	e de figu	ıras	
Figur	a 2.1	Tipos de escalas de estudios de cambio climático en las costas	17
Figur	a 2.2	El triángulo del riesgo	21
Figur	a 2.3	Elementos constitutivos del riesgo, tetraedro del riesgo	21
Figur	a 2.4	Función de densidad de la variable aleatoria que define la peligrosidad (agente o amenaza, <i>hazard</i>)	23
Figur	a 2.5	Discretización en términos de la magnitud del agente para la posterior evaluación del riesgo	24
Figur	a 2.6	Unidades de estudio para el cálculo del riesgo en la costa de América Latina y el Caribe y esquema de dimensiones y línea de costa en una de ellas	
Figur	a 2.7	Modelo Digital del Terreno en una zona de la costa de Brasil	28
Figur	a 2.8	Mapa mundial de Albers Equal-Area Conic Projections	30
Figur	a 2.9	Problemas de la definición de las unidades de estudio considerando tan sólo la perpendicularidad a la línea de costa básica	31
Figur	a 2.10	Ejemplo de unidades de análisis de la vulnerabilidad en una isla tras aplicar la generación automática de unidades de estudio	32
Figur	a 2.11	Modelo digital del terreno en las unidades de estudio de un tramo de la costa de América Latina y el Caribe	33
Figur	a 2.12	Máscara de inundación definitiva	33
Figur	a 2.13	Diagrama de obtención de las máscaras de inundación	34
Figur	a 2.14	Proceso de corrección e integración del GlobCover y el LandCover	35
Figur	a 2.15	Imagen de la herramienta para el cálculo de las variables de vulnerabilidad	37

Figura 2.16	Diagrama de trabajo de la superficie afectada en cada variable a partir de las máscaras de inundación entre las cotas 0 y 10 m	38
Figura 2.17	Ejemplo de cálculo de los tipos de suelo a la cota 10 m a partir del GlobCover modificado	39
Figura 2.18	Unidades de análisis y máscara de nivel 10 m en Jamaica	39
Figura 2.19	Unidades de análisis y máscara de nivel 10 m en Aruba	40
Figura 2.20	Unidades de análisis y máscara de nivel 10 m en un tramo de la costa de Brasil	40
Figura 2.21	llustración de polígonos de recogida de información sobre la costa a través de Google Earth	41
Figura 2.22	Relaciones entre el concepto de vulnerabilidad y sus elementos de análisis, de acuerdo con lo establecido por el IPCC (Third Assessment Report. Working Group 2)	43
Figura 2.23	Patrón espacial de distribución de los ecosistemas terrestres en la zona de estudio de acuerdo con el satélite GlobCover	45
Figura 2.24	Longitud de costa de Brasil y México, distinguiendo longitud de playas, frente marítimo (ciudad), diques y desembocaduras	50
Figura 2.25	Superficie relativa de los ecosistemas en el área ocupada por las unidades de estudio de América Latina y el Caribe	52
Figura 2.26	Línea de costa de América Latina y el Caribe de detalle utilizada en el estudio	64
Figura 2.27	Modelo Digital del Terreno STRM. Resolución de 90 m	64
Figura 2.28	Imagen de la batimetría GEBCO	65
Figura 2.29	Imagen de la topografía y batimetría de ETOPO	66
Figura 2.30	Ejemplo de datos de usos del suelo del Land Cover. Resolución de 1 km	68
Figura 2.31	Tipos de suelo del GlobCover de la zona de estudio. Resolución de 250 m	69
Figura 2.32	Distribución de las áreas protegidas	70
Figura 2.33	Grado de amenaza de los ecosistemas	70
Figura 2.34	Gridded Population of the World and the Global Rural-Urban Mapping Project (GRUMP)	71
Figura 2.35	Producto Interno Bruto 1990 y Producto Interno Bruto para el escenario B2 en el año 2025	73
Figura 2.36	Tiempo de acceso a ciudades con más de 50.000 habitantes	82
Figura 2.37	Localización de los arrecifes de coral en América Latina y el Caribe	83
Figura 2.38	Previsiones de crecimiento del turismo internacional	83
Figura 2.39	Distribución por país de la superficie entre las cotas 0 y 10 m en América Latina y el Caribe	94
Figura 2.40	Distribución por país de la superficie entre las cotas 0 y 10 m en América Latina y el Caribe	94
Figura 2.41	Evolución de la población en las últimas décadas en varios países de América Latina y el Caribe	95

Figura 2.42	Distribución de la población en los países de América Latina y el Caribe entre las cotas 0 y 10 m en la franja costera	98
Figura 2.43	Distribución de la población en los países de América Latina y el Caribe entre las cotas 0 y 3 m	99
Figura 2.44	Distribución de la población entre las cotas 0 y 10 m respecto del total del país	99
Figura 2.45	Distribución de la población en los primeros 5 km de costa en los países de América Latina y el Caribe	102
Figura 2.46	Tramos de carreteras entre las cotas 0 y 10 m en América Latina y el Caribe. Clasificación por país	108
Figura 2.47	Tramos de carreteras primarias entre las cotas 0 y 10 m en América Latina y el Caribe. Clasificación por país	108
Figura 2.48	Tramos de carreteras secundarias entre las cotas 0 y 10 m en América Latina y el Caribe. Clasificación por país	109
Figura 2.49	Tramos de ferrocarril afectados entre las cotas 0 y 10 m en América Latina y el Caribe. Clasificación por país	111
Figura 2.50	Distribución de ecosistemas en América Latina y el Caribe entre las cotas 0 y 1 m. Clasificación por país	112
Figura 2.51	Distribución de ecosistemas en América Latina y el Caribe entre las cotas 0 y 3 m. Clasificación por país	112
Figura 2.52	Distribución de ecosistemas en América Latina y el Caribe entre las cotas 0 y 10 m. Clasificación por país	113
Figura 2.53	Distribución de ecosistemas en América Latina y el Caribe entre las cotas 0 y 10 m. Clasificación por país	113
Figura 2.54	Índice de valoración ecológica medio para cada país de América Latina y el Caribe	114
Figura 2.55	Distribución entre las cotas 0 y 10 m de la superficie crítica-vulnerable en América Latina y el Caribe. Clasificación por país	115
Figura 2.56	Distribución entre las cotas 0 y 10 m de la valoración de los ecosistemas en América Latina y el Caribe. Clasificación por país	117
Figura 2.57	Distribución de la superficie de tierras de cultivo dispersos por cotas y por países	117
Figura 2.58	Distribución de la superficie de tierras de cultivo de secano afectadas, por cotas y por países	118
Figura 2.59	Distribución de la superficie de ciudades por cotas entre 0 y 10 m y por países	124
Figura 2.60	Valoración de los ecosistemas hasta la cota 10m en las unidades de estudio de 50 km	127
Figura 2.61	Distribución espacial de la población entre las cotas 0 y 1 m en América Latina y el Caribe	128
Figura 2.62	Densidad de población afectada hasta la cota 10 m en las unidades de estudio de 50 km	128
Figura 2.63	Unidades de análisis y máscaras de niveles de 1, 5 y 10 m en Buenos Aires	129

Figura 2.64	Unidades de análisis y máscaras de niveles de 1, 5 y 10 m en Kingston	129
Figura 2.65	Unidades de análisis y máscaras de niveles de 1, 5 y 10 m en Río de Janeiro	130
Figura 2.66	Unidades de análisis y máscaras de niveles de 1, 5 y 10 m en las Islas Turcas y Caicos	130
Figura 2.67	Unidades de análisis y máscaras de niveles de 1, 5 y 10 m en Bahía de Vitoria	131
Figura 2.68	Unidades de análisis y máscaras de niveles de 1, 5 y 10 m en la desembocadura del río Uruguay	132
Figura 2.69	Niveles de inundación de 3, 5 y 10 m y capa de población en las unidades de costa de Puerto Rico	132
Figura 2.70	Niveles de inundación de 3, 5 y 10 m y capa de población en las unidades de costa de la desembocadura del río Uruguay y ciudad de Buenos Aires	133
Figura 2.71	Niveles de inundación de 3, 5 y 10 m y capa de población en las unidades de costa en Jamaica	133
Figura 2.72	Niveles de inundación de 3, 5 y 10 m y usos del suelo (cultivos y zonas urbanas) en un tramo de la costa de Brasil-Aracaju	134
Figura 2.73	Niveles de inundación de 3, 5 y 10 m y usos del suelo (cultivos y zonas urbanas) en un tramo de la costa de Brasil-Bahía Guaratuba	134
Figura 2.74	Niveles de inundación de 3, 5 y 10 m y usos del suelo (cultivos y zonas urbanas) en las islas Saint Kitts y Nevis	135
Figura 2.75	Niveles de inundación de 3, 5 y 10 m y usos del suelo (cultivos y zonas urbanas) en Aruba	135
Figura 2.76	Niveles de inundación de 3, 5 y 10 m y usos del suelo (cultivos y zonas urbanas) en Martinica	136
Figura 2.77	Niveles de inundación de 3, 5 y 10 m y usos del suelo (cultivos y zonas urbanas) en Puerto Rico	136
Figura 2.78	Índice de vulnerabilidad ecológica en América Latina y el Caribe (valor medio entre las cotas 0 y 10m)	137
Figura 2.79	Longitud de playa, frente marítimo y longitud coincidente en América Latina y el Caribe. Clasificación por país	141
Figura 2.80	Porcentaje de costa con playa, frente marítimo y parte coincidente respecto al total de costa. Clasificación por país	142
Figura 2.81	Distribución de tramos de playas en los países de América Latina y el Caribe. Clasificación por país	143
Figura 2.82	Esquema de la modificación simplificada de una playa confinada o encajada ante un cambio en la dirección dominante del oleaje y ejemplo de playa encajada en la región	143
Figura 2.83	Porcentaje de costa con playas rectilíneas en unidades de 50 km	145
Figura 2.84	Porcentaje de costa con playas encajadas en unidades de 50 km	146
Figura 2.85	Porcentaje de playa que no se encuentran adyacentes a una desembocadura en unidades de 50 km	146

Figura 2.86	Cotas de inundación y unidades de estudio y esquema de análisis de la información SIG	148
Figura 2.87	Longitud de diques identificados en América Latina y el Caribe. Clasificación por país	151
Figura 2.88	Longitud de los diques de abrigo de los puertos identificados en América Latina y el Caribe	152
Figura 2.89	Localización de arrecifes de coral, distinguiendo arrecifes de aguas cálidas y frías	154
Figura 2.90	Frecuencia de superación de 1°C en el mes cálido anual (DHM) durante el periodo 2030-2039 y 2050-2059 para cada una de las celdas de 36 km en el Caribe con arrecifes de coral, en el escenario A2	156
Figura 2.91	Mapa de arrecifes amenazados por el desarrollo costero	158
Figura 2.92	Mapa de arrecifes amenazados por sedimentación y contaminación desde fuentes terrestres	159
Figura 2.93	Mapa de observaciones de blanqueamiento de coral en el Caribe	160
Figura 2.94	Mapa de superficie de arrecifes de coral e índice de amenaza integral por subregiones	161
Figura 2.95	Amenaza integrada en los arrecifes del Caribe	161
Figura 2.96	Áreas previsibles con temperatura del agua por encima de la normal	162
Figura 2.97	Impactos en los arrecifes de coral por el aumento de la temperatura del agua del mar	163
Figura 2.98	Superficie de los arrecifes de coral en la región de América Latina y el Caribe y zoom en el mar Caribe	164
Figura 2.99	Índice de vulnerabilidad asociado a los corales	164
Figura 2.100	Isolíneas de nivel para las cotas 1 y 2 m en el delta del río San Francisco	166
Figura 2.101	Isolíneas de nivel para las cotas 1 y 2 m en el delta del Río de la Plata	166
Figura 2.102	Isolíneas de nivel para las cotas 1 y 2 m en el delta del río Orinoco	167
Figura 2.103	Isolíneas de nivel para las cotas 1 y 2 m en el delta del río Magdalena	167
Figura 2.104	Isolíneas de nivel para las cotas 1 y 2 m en el delta del río Grijalva	168
Figura 2.105	Isolíneas de nivel para las cotas 1 y 2 m en el delta del río Atrato	168
Figura 2.106	Isolíneas de nivel para las cotas 1 y 2 m en el delta del río Amazonas	169
Índice de cua	adros	
Cuadro 2.1	Esquema y documentos del proyecto	16
Cuadro 2.2	Características de las escalas de estudio del riesgo consideradas	19
Cuadro 2.3	Lista de ecosistemas considerados	36
Cuadro 2.4	Resumen de la información recogida de las imágenes de satélite de Google-Earth	42
Cuadro 2.5	Clasificación biogeográfica	44
Cuadro 2.6	Ecosistemas y variables climáticas a las que son sensibles y efectos en la biodiversidad	46

Cuadro 2.7	Clasificación de las formaciones vegetales efectuada por observaciones de satélite	48
Cuadro 2.8	Ecosistemas acuáticos y terrestres de los cuales existe información sobre su distribución espacial en la franja litoral de América Latina y el Caribe	50
Cuadro 2.9	Criterios de valoración del grado de protección de los ecosistemas	51
Cuadro 2.10	Criterios para la valoración de la singularidad de los ecosistemas	52
Cuadro 2.11	Criterios para establecer el valor de singularidad del área inundada de una unidad de estudio	53
Cuadro 2.12	Criterios para establecer el valor de singularidad de una unidad de estudio frente a incrementos de la temperatura del mar	53
Cuadro 2.13	Valoración del indicador I s	54
Cuadro 2.14	Valoración del indicador V ECO	55
Cuadro 2.15	Coeficiente de homogeneización del poder adquisitivo del dólar en 2009 y en el momento de la valoración	
Cuadro 2.16	Valor del indicador	62
Cuadro 2.17	Clasificación del GLCNMO	67
Cuadro 2.18	Población total para cada país en el 2000 calculada a partir de los datos de densidad de población	72
Cuadro 2.19	Renta media por país en América Latina y el Caribe	74
Cuadro 2.20	Clasificación de los 100 puertos con más actividad en 2010 en TEUs	76
Cuadro 2.21	Clasificación de los 100 puertos con más actividad en 2010 en toneladas de mercancías	79
Cuadro 2.22	Resumen de las llegadas de turistas a América	84
Cuadro 2.23	Resumen de bases de datos utilizadas para evaluar la vulnerabilidad	86
Cuadro 2.24	Resumen de variables contempladas en el análisis de vulnerabilidad de la costa de América Latina y el Caribe frente a cambio climático y resolución y escalas de los resultados presentados	87
Cuadro 2.25	Relación de los países analizados, abreviaturas y códigos ISO 3166/2	88
Cuadro 2.26	Relación de los países con área de costa estudiada entre los 0 y 10 m, área cubierta por las unidades de estudio, área total del país y proporciones de territorio correspondientes	80
Cuadro 2.27	Superficie de terreno entre cada cota de cada país	
Cuadro 2.28	Superficie entre cada cota relativa a la superficie total de terreno de cada país. Clasificación por país	
Cuadro 2.29	Habitantes localizados inmediatamente en la línea de costa	
Cuadro 2.30	Población entre cada cota. Clasificación por país	
Cuadro 2.31	Porcentaje de población de cada país entre las cotas 0 y 10 m	
Cuadro 2.32	Densidad de población en los primeros 10 m de costa. Resultados por país	

Cuadro 2.33	Población en los primeros 5 km de costa. Clasificación por país	103
Cuadro 2.34	Tramos de carreteras afectados entre cada cota. Clasificación por país	104
Cuadro 2.35	Tramos de carreteras primarias afectados entre cada cota. Clasificación por país	105
Cuadro 2.36	Tramos de carreteras secundarias afectados entre cada cota. Clasificación por país	106
Cuadro 2.37	Tramos de ferrocarril afectados entre cada cota clasificación por países	109
Cuadro 2.38	Índice de valoración ecológica medio para cada país de América Latina y el Caribe	114
Cuadro 2.39	Valoración de los ecosistemas en América Latina y el Caribe	115
Cuadro 2.40	Relación de países por superficie afectada total de cultivos dispersos entre las cotas 0 y 10 m	118
Cuadro 2.41	Relación de países por superficie afectada total de cultivos de secano entre las cotas 0 y 10 m	120
Cuadro 2.42	Relación de áreas de cultivos dispersos (Mosaic croplands) en la costa (recogidas en los polígonos de estudio) respecto al total de cada país	121
Cuadro 2.43	Relación de áreas de cultivos de secano en la costa (recogidas en los polígonos de estudio) respecto al total de cada país	123
Cuadro 2.44	Superficie de ciudades (área urbana) por cotas. Clasificación por país	125
Cuadro 2.45	Características del frente costero en América Latina y el Caribe. Clasificación por país	138
Cuadro 2.46	Tipos de playas. Clasificación por país	139
Cuadro 2.47	Vulnerabilidad de los diques de defensa de los puertos	152
Cuadro 2.48	Área y población en los deltas más importantes de América Latina y el Caribe hasta las cotas 1 y 2 m	165

Glosario

AMP Áreas marinas protegidas

CIA Central Intelligence Agency –US Government

CIESIN Center for International Earth Science Information

DCW Digital Chart of the World

DHM Degree Heating MonthDHW Degree Heating Weeks

DMA United States Defense Mapping Agency'sESRI Environmental Systems Research Institute

GADM Global Administrative Areas

GLC-NMO Global Land Cover del National Mapping Organizations

GRUMP Gridded Population of the World and the Global Rural-Urban Mapping Project

FAO Organización de las Naciones Unidas para la Agricultura y la Alimentación

ISO Organización Internacional para la Estandarización

LCCS Land Cover Classification System

MODIS Moderate Resolution Imaging Spectroradiometer

ONC Operational Navigation Chart

PIB Producto Interno Bruto

SRES Special Report on Emissions Scenarios

STRM Shuttle Radar Topography Mission

STRM-90 Shuttle Radar Topography Mission 90 m resolution

UNEP United Nations Environment Programme

WRI World Resources Institute

WTO Organización Internacional del Turismo

WWF World Wildlife Fund

WWG World Wide Grid

1. Introducción

1.1 Contexto

El estudio regional de los efectos del cambio climático en las costas de América Latina y el Caribe (ALyC en adelante) se ha estructurado en cuatro partes principales en concordancia con una metodología integral de evaluación del riesgo desarrollada durante el estudio. Como resultado del proyecto se presentan cuatro documentos principales que versan sobre el análisis de los agentes, el estudio de la vulnerabilidad de las costas, la evaluación de los impactos derivados, y por último, un documento dedicado a la integración de todos los factores en la evaluación de los riesgos asociados a algunos de los impactos estudiados en las costas de la región.

Como productos auxiliares se presenta un anexo de efectos del cambio climático que recoge las formulaciones teóricas utilizadas y constituye un manual de los conceptos, procesos y fenómenos costeros, analizados en el estudio entre muchos otros. Además en el citado documento se presentan las expresiones para la evaluación de los impactos de una forma aproximada (método de las perturbaciones) que se pueden utilizar como primer diagnóstico en futuros proyectos locales y regionales. Adicionalmente, la metodología desarrollada para el estudio del riesgo de forma integral se describe en un documento específico (guía metodológica). Por último en el marco del proyecto se ha desarrollado un visor web de los resultados para la máxima difusión de los mismos en los países de la región. En concreto, los documentos del proyecto son:

- Documento 1: Dinámicas, tendencias y variabilidad climática en ALyC.
- Documento 2: Vulnerabilidad y exposición de las costas de ALyC frente al cambio climático.
- Documento 3: Impactos del cambio climático en las costas de ALyC.
- Documento 4: Evaluación de riesgos frente al cambio climático en las costas de ALyC.
- Efectos teóricos el cambio climático en las costas (documento auxiliar).
- Guía metodológica del análisis del riesgo (documento auxiliar).
- Visor web de resultados.

El cuadro 2.1. resume la estructura y los productos del estudio realizado. En concreto, el presente documento es el número dos y se dedica al estudio de la vulnerabilidad y la exposición de ALyC.

CUADRO 2.1 ESQUEMA Y DOCUMENTOS DEL PROYECTO

Cambio Climático en las costas de ALyC					
Documento 1: Agentes costeros	Documento 2: Vulnerabilidad	Documento 3: Impacto	Documento 4: Riesgos		
DinámicasTendenciasVariabilidad climática en la costa					
	Documentos auxi	liares			
Efectos teóricos del cambio climático en las costas	Guía metodológica	Visor web	de resultados		

Fuente: Elaboración propia.

CEPAL

1.2 Escalas espaciales de estudio

Mientras que la investigación y las políticas de protección frente a inundaciones han estado dominadas hasta ahora por aproximaciones meramente técnicas, los aspectos sociales y socioeconómicos han ganado en importancia en las últimas décadas debido a un uso del suelo expansivo e intensivo, a un incremento en daños potenciales en las áreas de inundación y, por tanto, conflictos frecuentes entre el uso socioeconómico del suelo y las políticas de protección (Schanze, 2002). Durante los últimos años se está llevando a cabo un cambio de paradigma, desde un punto de vista técnico en la gestión del riesgo por inundación, incluyendo una metodología del análisis de riesgo que reúne todas las ventajas y desventajas, o en términos económicos, todos los beneficios y los costes.

Siguiendo la terminología de la teoría del riesgo en inundaciones más desarrollada hasta el momento en proyectos como el Floodsite (www.floodsite.net) o Comrisk (Common Strategies to Reduce the Risk of Flooding in Coastal Lowlands), se hace distinción entre tres tipos de alcance y escala de los estudios: macro, meso y microescala -figura 2.1-. Esta escala es aplicable a los estudios de evaluación de riesgos de cambio climático en las costas puesto que comparte aspectos y similitudes con la evaluación de inundaciones en cuanto a la escala espacial de los estudios, tipo y escala de información y estrategias y medidas de adaptación se refiere. En primer lugar, el detalle de la escala espacial es determinante para la aproximación al estudio y la respuesta que se pretende dar. A este respecto, se puede considerar una escala nacional o internacional, a efectos de comparación entre países o regiones, identificando las zonas con mayor o menor riesgo. Desde la perspectiva de la macroescala, la información de que se dispone tiene un detalle espacial bajo, presenta la imposición de una necesidad de homogeneidad en la información, que hace que información disponible en unas zonas y en otras no, no pueda ser utilizada. Tanto la escala espacial como la de la información de base ejercen un condicionante directo en los resultados que se pueden obtener. Igualmente, las estrategias que se pueden adoptar quedan en el dominio de la intercomparación global, entre países o regiones, definiendo zonas de riesgos especialmente importantes que será necesario estudiar a una escala más detallada.

En un dominio de estudio más detallado, o mesoescala, la definición espacial aumenta así como la información de partida de los estudios, disponiendo de datos más abundantes, de más resolución y sobre más aspectos tanto físicos como socioeconómicos, ya que la necesidad de homogeneidad de la información ya sólo es exigible a nivel de un país o región, dependiendo sólo de los organismos y administraciones nacionales o regionales. En este caso las cuentas y balances, datos geofísicos, etc. son más sencillos de conseguir, detallados y variados. Los resultados que se pueden extraer en este grado de estudio son cuantitativamente más fiables que a una escala macro. En consecuencia, estrategias más concretas de actuación, con conclusiones y análisis más detallados, que puedan derivar en actuaciones y diagnósticos de mayor concreción, sí son posibles con este tipo de evaluación.

No obstante, para tomar medidas concretas de adaptación, tales como proyectos específicos de defensa de la costa, protección frente a inundaciones, etc. un estudio de detalle del elemento geomorfológico sobre el que se va a actuar es determinante. Véase, por ejemplo, el caso de una playa donde se pretende realizar una defensa frente a la erosión costera. En este caso es necesario un estudio preciso de la configuración geomorfológica e hidrodinámica para establecer de forma precisa cuál va a ser su evolución frente a las distintas alternativas posibles de protección. En este caso, la información necesaria es más detallada y local de la unidad de estudio así como también lo es la escala espacial puesto que se debe resolver el proceso físico que tiene lugar con sus condicionantes y características locales.

DETALLE DE LA INFORMACIÓN ESCALA ESPACIAL INICIAL Y RESULTADOS Loca Alto Micro Regional Medio Meso Nacional Bajo Internacional Macro POLÍTICA DE Planes regionales Medidas locales Evaluación global EVALUACIÓN/ADAPTACIÓN

FIGURA 2.1
TIPOS DE ESCALAS DE ESTUDIOS DE CAMBIO CLIMÁTICO EN LAS COSTAS

Fuente: Meyer, V. (2005), Methoden der Sturmflut-Schadenpotentialanalyse an der deutschen Nordseeküste, Dissertation at the University of Hannover, UFZ-Dissertation 3/2005.

La principal diferencia entre el enfoque desde un punto de vista macro, meso o micro está en relación con el detalle espacial que se quiera alcanzar en el análisis de daño, ya que la resolución espacial viene condicionada por la diferenciación de usos y tipos de suelo, datos socioeconómicos y su distribución espacial y los procesos físicos a resolver.

En el caso que nos ocupa, para el análisis de la vulnerabilidad y la exposición en ALyC, claramente estamos en una situación macroescalar, con varios condicionantes para el tipo de información a procesar:

- —Homogeneidad de la información para los más de 72.000 kms de estudio.
- —Fuentes de información contrastadas.
- —Escala espacial de estudio suficientemente detallada para alcanzar a identificar impactos en las costas (resolución de los procesos costeros) y suficientemente grande como para que sea susceptible de un análisis continental a efectos comparativos inter-territoriales.

Un estudio macroescalar como el del presente proyecto, se caracteriza porque las fuentes de datos suelen provenir de estadísticas oficiales y organismos (inter)nacionales. A escala nacional depende de las estadísticas y datos del propio país, mientras que cuando se trata de estudios internacionales se ha de recurrir a datos (globales generalmente) de organismos internacionales: Organización de las Naciones Unidas (ONU), Comisión Económica para América Latina y el Caribe (CEPAL), World Wildlife Fund (WWF), National Oceanic and Atmospheric Administration (NOAA), o de comunidades de países (Unión Europea). A este nivel se puede realizar una desagregación de ciertos datos macroeconómicos a un nivel inferior al nacional mediante el uso de otras variables desagregadas como la población o el número de empleados, lo que equivale a asumir una distribución uniforme de ciertas variables de las que no se dispone de la distribución espacial. Por la definición de los datos, estos métodos adolecen de inexactitud en el resultado pero sirven para identificar el daño potencial así como permiten la comparación del riesgo entre macro-zonas espaciales.

Queda claro que las estadísticas y censos nacionales superan en grado de detalle y definición la información considerada a esta escala pero sin embargo, la restricción de homogeneidad de la información impone un límite al uso de los datos nacionales de distintas fuentes. Además, muchos de los datos globales se disponen tan sólo en un año determinado (p.ej. año 2000 para los datos de población) y pueden estar desactualizados con los últimos disponibles en algunos países. No obstante, a efectos comparativos y de diagnóstico de los problemas y de los posibles impactos en las costas de ALyC, son adecuados ya que realizan el análisis entre unidades de estudio con homogeneidad en la información.

Respecto a los estudios de mesoescala, estos estudios, al estar basados normalmente en datos nacionales, disponen de más y mejores fuentes de información y de desagregación espacial, al menos a escala de regiones o municipios. Esto permite la caracterización de distintas zonas a partir de la distribución espacial de los datos disponibles. Por ejemplo, en este caso la distribución de renta ya no se distribuye en función de los habitantes, sino que probablemente se cuente con datos de distribución espacial de renta permitiendo nuevas visiones, por ejemplo, definir una zonificación del dominio en función de la renta por habitante. También permite incorporar otros sectores de los que a una escala internacional puede que no se dispusiera de información, tales como sectores económicos, infraestructuras o ecosistemas concretos. En este caso, la cantidad de valor comprometido puede ser determinado con mayor rigor. No obstante, todavía mantiene cierta incertidumbre debido a no poder resolver los procesos físicos con sus características concretas o no poder desagregar cada dato en nuevas subcategorías.

En el contexto de estudios de microescala, se analiza el daño y el valor asociado de cada unidad impactada, resolviendo los procesos físicos y determinando con menor grado de incertidumbre la evolución y el daño previsible. Los datos se desagregan por categorías dentro de cada clasificación y se dispone de una distribución espacial más detallada. Como ejemplo, en la erosión de una playa se dispondría de las características físicas de la misma, los edificios por categorías que se sitúan tras ella, dinámicas marinas, población y riqueza distribuidas espacialmente a escala de cientos de metros, costes de reconstrucción y afección por unidad de longitud erosionada, etc.

CUADRO 2.2 CARACTERÍSTICAS DE LAS ESCALAS DE ESTUDIO DEL RIESGO CONSIDERADAS

Escala	Alcance del estudio	Nivel de gestión	Exactitud de los resultados	Número datos de entrada	Resolución datos de entrada
MACRO	(inter)nacional	Políticas globales de mitigación del daño	Bajo	Bajo	Bajo
MESO	regional	Estrategias de adaptación de gran escala	Medio	Medio	Medio
MICRO	local	Medidas concretas de adaptación	Alto	Alto	Alto

Fuente: Meyer, V. (2005), Methoden der Sturmflut-Schadenpotentialanalyse an der deutschen Nordseeküste, Dissertation at the University of Hannover, UFZ-Dissertation 3/2005; y Gewalt M. y otros (1996), EUROflood – *Technical Annex 8. Economic Assessment of Flood Hazards*. Regional Scale Analysis-Decision Support System (RSA-DSS), München.

1.3 Definición de conceptos asociados al riesgo

Los conceptos y definiciones existentes en la literatura asociados a riesgo son múltiples y variados: desastre (disaster), riesgo (risk), amenaza (hazard), incertidumbre (uncertainty), vulnerabilidad (vulnerability), capacidad de adaptación (adaptive capacity), resiliencia (resilience), susceptibilidad o sensibilidad (sensitivity), y exposición (exposure). El propósito de este apartado es tratar de clarificar todos estos conceptos brevemente para entender a qué nos referimos en este documento al hablar de vulnerabilidad y exposición. Nótese que esta tarea es muy importante, ya que, si bien en muchos casos están claramente establecidos, en otros muchos son conceptos susceptibles de interpretarse de diferente manera en función del problema (rama de trabajo) de que se trate. Por ese motivo, se hace especial hincapié en su vinculación con las definiciones y usos propuestos por otros investigadores y/u organismos gubernamentales.

Para una mayor explicación de estos términos, ya que aquí nos centramos en las variables de vulnerabilidad y exposición, se puede consultar la guía metodológica propuesta y el marco de referencia general donde se describe la aproximación planteada para la evaluación integral del riesgo, y donde se definen también cada uno de los conceptos.

Exposición (Exposure)

En este estudio el término exposición (*exposure*) se utiliza para enlazar el agente, con el riesgo en una zona concreta, y de esta manera incluir la información de la orografía de la costa y la disposición de las actividades distribuidas a lo largo de la misma, y susceptibles de verse afectadas por un agente. Por lo tanto, la exposición, se define como la zona, región, entidad o ente que se ve afectado ante la ocurrencia de un evento asociado al agente. Usualmente en la bibliografía sobre desastres naturales este término se emplea para definir la población que vive en una zona geográfica afectada por un agente.

Vulnerabilidad (Vulnerability)

Es obvio que cuando una determinada zona costera se ve afectada por un agente de una intensidad determinada, la población, los ecosistemas, las infraestructuras, los servicios y/o las actividades económicas se ven afectados. Para cuantificar ese daño se define el concepto de vulnerabilidad (vulnerability) como la capacidad que tienen las zonas, regiones, entidades o entes de anticiparse, enfrentarse, resistir y recuperarse del impacto producido por un agente de una magnitud dada, entendiendo que la vulnerabilidad está constituida por múltiples factores institucionales, económicos y socio-culturales. Desde el punto de vista ingenieril, la vulnerabilidad se puede entender

como una función matemática definida según el grado de pérdida del elemento afectado, dependiendo de la intensidad del agente. Para propósitos socioeconómicos más generales, la vulnerabilidad es un concepto definido de forma menos estricta, y en muchos casos basta con clasificar las unidades de estudio mediante una escala graduada entre "sin daños" y "daños totales".

La Comisión Europea (Schneiderbauer y Ehrlich, 2004) considera que la vulnerabilidad está compuesta de dos términos: la **susceptibilidad o sensibilidad** (*susceptibility or sensitivity*) y la **resiliencia** (*resilience*) donde la resiliencia a su vez puede dividirse en dos términos: la **capacidad de resistir** (*coping capacity*) y la **recuperación** (*recovery*).

Ya en el ámbito del cambio climático, el IPCC (Panel Intergubernamental de Cambio Climático) define la vulnerabilidad como el grado de daño que el cambio climático puede producir en un sistema natural o social, y se establece que la vulnerabilidad es función de:

- —**La susceptibilidad o sensibilidad (**sensitivity) de un sistema a cambios en el clima (el grado de respuesta de un sistema a un cambio dado en el clima, incluyendo efectos perjudiciales y beneficiosos);
- —**La capacidad de adaptación** (*adaptive capacity*) definida como el grado en el cual, ajustes en prácticas, procesos o estructuras pueden moderar o eliminar el daño potencial o permiten aprovecharse de las oportunidades creadas por un cambio dado en el clima. Este concepto podría equivaler al concepto de **resiliencia** dado por la Comisión Europea (Schneiderbauer y Ehrlich, 2004).

En las secciones siguientes se explica de forma más concreta cómo se van a tratar cada uno de estos conceptos en este estudio.

1.4 Breve descripción de la metodología de riesgo planteada

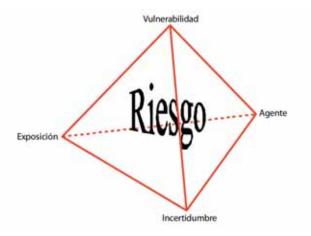
Es indudable que la estimación de las pérdidas futuras esperadas es un asunto de vital interés para los responsables en planificación del desarrollo, de la gestión de infraestructuras o de la administración pública en una determinada región. El tipo de estimación de pérdidas requerido por los mismos depende del propósito del estudio. Por ejemplo, un estudio se puede centrar únicamente en la estimación de pérdidas físicas de edificios, infraestructuras y equipos, mientras que en otros casos, el número de víctimas humanas y el número de damnificados sin casa puede ser igualmente importante. En el caso de planificación de desarrollo a largo plazo, también deben estimarse aspectos tales como las pérdidas económicas.

En la literatura existente está ampliamente reconocido que a la hora de evaluar el riesgo, éste depende principalmente de los componentes: agente o amenaza (*hazard*, H), exposición (*exposure*, E), y vulnerabilidad (*vulnerability*, V), configurando lo que se conoce como el triángulo del riesgo (*risk triangle*), y que se ha aplicado principalmente para la investigación en desastres naturales (véase la figura 2.2).

FIGURA 2.2 EL TRIÁNGULO DEL RIESGO

Fuente: Schneiderbauer, S. y D. Ehrlich (2004), *Risk, hazard and people's vulnerability to natural hazards.* A review of definitions, concepts and data. European Commission. Joint Research Centre. Luxemburgo.

Por lo tanto, se define el riesgo, R, como:


$$R_{ah} = H_{ah} E_a V_{ah} \tag{2.1}$$

Donde los subíndices a y h hacen referencia a una localización geográfica, y una amenaza con su magnitud asociada, respectivamente.

En este proyecto, la expresión (2.1) es insuficiente para poder emplear toda la información disponible de agentes, infraestructuras, y actividades socioeconómicas a lo largo del litoral. Por este motivo, basándonos en los estudios existentes y en metodologías para la determinación de fiabilidad de obras civiles, se va a desarrollar una expresión que permita i) calcular el riesgo de forma coherente con la definición proporcionada en la sección anterior y ii) introducir toda la información disponible.

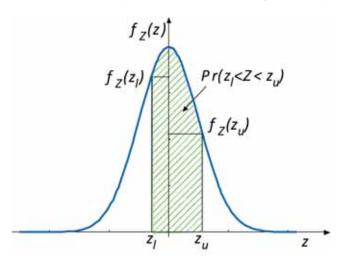
Por ese motivo, a la hora de estimar el riesgo se van a considerar los factores: **agente**, **incertidumbre**, **exposición**, y **vulnerabilidad** (véase la figura 2.3), y que se definieron en la sección anterior. Nótese que estos elementos constituyen el tetraedro del riesgo (*risk tetraedral*), y son los elementos que se emplearán en este estudio para la determinación cuantitativa del riesgo.

FIGURA 2.3
ELEMENTOS CONSTITUTIVOS DEL RIESGO, TETRAEDRO DEL RIESGO

Fuente: Elaboración propia.

El primer paso para el desarrollo de la metodología propuesta es recabar información sobre cada uno de estos elementos que componen el riesgo que se pretende evaluar, teniendo en cuenta los siguientes aspectos:

Los **agentes** (*hazard*) que intervienen en la estimación del riesgo pueden depender de otros agentes o variables que tienen una determinada distribución de probabilidad y, por tanto, es necesario tener información de cada una de esas variables para poder cuantificar de forma lo más precisa posible la incertidumbre asociada a cada magnitud del evento considerado. Así por ejemplo, si se desea estudiar el riesgo de inundación en la costa, el agente con el que se va a evaluar el riesgo es la cota de inundación (Z), que a su vez depende de otras variables o agentes como son el nivel del mar (X), y el oleaje (Y). Nótese que las mayúsculas hacen referencia a que la variable es aleatoria. De esta manera se está en disposición de calcular la incertidumbre asociada a cada nivel de inundación. A este punto tratan de dar respuesta los documentos 1 y 3 del proyecto sobre dinámicas costeras e impactos derivados en las costas.


Otro factor importante es la determinación de la **exposición** (*exposure*), o zona afectada, según la magnitud del agente. En el caso de analizar el riesgo de inundación costera, para calcular la exposición (m² afectados) para cada nivel de inundación posible, se precisa un modelo digital del terreno para poder evaluar qué zonas se ven afectadas por la inundación. Nótese que a este nivel no importa conocer qué elementos hay en la zona expuesta, ya que ese efecto ya se considera en la vulnerabilidad.

Para estimar la **vulnerabilidad** (*vulnerability*) es importante determinar la sensibilidad (*sensibility or susceptibility*) y la capacidad de adaptación o resiliencia (*adaptive capacity or resilience*) de los distintos elementos identificados en la zona expuesta, en función de la intensidad del evento asociado al agente y es, por tanto, un parámetro multidimensional. Nótese que los posibles daños producidos por una inundación dependen, por ejemplo, del nivel de agua que se alcance en cada zona, y para cada nivel de agua, ese daño se debería cuantificar de forma diferente. Posteriormente se desarrolla de forma más precisa cómo se va a tratar la vulnerabilidad para cada tipo de riesgo considerado en este trabajo.

Teniendo en cuenta estas consideraciones se va a proceder a definir matemáticamente el riesgo, y posteriormente se establece, de forma matemática, la metodología que se emplea en el proyecto (véase guía metodológica de análisis del riesgo para más detalles).

En la figura 2.4 se muestra la función de densidad y la probabilidad de que la variable aleatoria que define la peligrosidad (el agente o amenaza) esté entre los valores z_i y z_u . Nótese que esa probabilidad representa, para el agente concreto, cuál es la incertidumbre asociada a que se encuentre entre esos dos valores, y se corresponde con la integral mostrada en la figura 2.4. En el capítulo dedicado a las dinámicas se explica cómo se han determinado o estimado esas probabilidades cuantitativamente en cada caso considerado.

FIGURA 2.4
FUNCIÓN DE DENSIDAD DE LA VARIABLE ALEATORIA QUE DEFINE LA PELIGROSIDAD (AGENTE O AMENAZA, *HAZARD*)

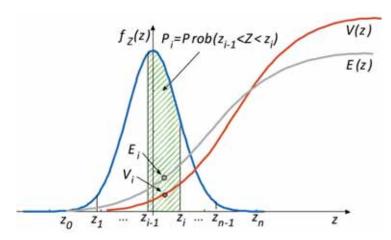
Fuente: Elaboración propia.

Con esta información, la ecuación genérica del riesgo para un agente determinado *z*, asociado a una localización geográfica concreta, se define de la siguiente manera:

$$R = \int_{-\infty}^{\infty} f_z(z)E(z)V(z)dz$$
 (2.2)

Donde E(z) es la exposición de la zona de estudio para el valor del agente z, que en el caso del riesgo de inundación, representa la superficie de costa inundada para una cota de inundación dada. Análogamente, V(z) es la vulnerabilidad asociada al valor del agente z.

Nótese que la anterior expresión matemática del riesgo se corresponde con la definición propuesta para este proyecto (2.1), ya que representa el valor esperado de la exposición por la vulnerabilidad, y es una estimación del valor esperado de las pérdidas.


Es importante recalcar que la expresión (2.1) constituye una conceptualización genérica, que permite obtener muchas de las definiciones de riesgo existentes en la literatura como particularizaciones de la misma.

Desde el punto de vista práctico es inviable trabajar de forma diferencial empleando la expresión (2.2), ya que es complicado definir de forma continua tanto la función de exposición como la de vulnerabilidad. Por ese motivo la ecuación (2.2) se discretiza integrando mediante la regla del trapecio de la siguiente manera:

$$R \approx \sum_{i=1}^{n} P_{i} E_{i} V_{i} \tag{2.3}$$

Donde n es el número de subintervalos en los que se discretiza la magnitud del agente, P_i es la probabilidad de que el agente z se encuentre entre los valores de cota del intervalo i-ésimo, E_i es la exposición que se produce para el valor medio del agente $(z_{i-1} + z_i)/2$, y V_i es la vulnerabilidad que se produce para el valor del agente $(z_{i-1} + z_i)/2$. La interpretación gráfica de la discretización se muestra en la figura 2.5.

FIGURA 2.5
DISCRETIZACIÓN EN TÉRMINOS DE LA MAGNITUD DEL AGENTE PARA LA POSTERIOR EVALUACIÓN DEL RIESGO

Fuente: Elaboración propia.

Como se ve, la expresión (2.3) coincide con la definición de riesgo como producto de probabilidad (discreta) multiplicado por exposición y por vulnerabilidad, utilizada en otros estudios en la literatura.

Alternativamente, hay autores que definen el producto $E(z_{lim}V(z_{lim}))$ como las consecuencias, C, de esta manera la expresión (2.3) se simplifica y queda como:

$$R = E(z_{lim}) V E(z_{lim}) P = C \times P$$
(2.4)

Donde el riesgo es igual a la probabilidad por las consecuencias, expresión, esta última, que también se emplea en la literatura.

La vulnerabilidad cambia con el tipo de agente y la severidad del mismo. La determinación del riesgo requiere del conocimiento sobre la distribución espacial de la ocurrencia de los eventos asociados a los agentes y de los elementos en riesgo.

En el siguiente apartado se trata el análisis de los términos de exposición y vulnerabilidad de la ecuación básica de evaluación del riesgo en la metodología planteada.

2. Metodología de evaluación de la vulnerabilidad

2.1 Introducción

Existen más de 25 definiciones, conceptos y métodos en la literatura especializada, para sistematizar el cálculo de la vulnerabilidad. Una de las definiciones más conocida fue propuesta por the International Strategy for Disaster Reduction (UN/ISDR, 2004): "The conditions determined by physical, social, economic and environmental factors or processes, which increase the susceptibility of a community to the impact of hazards."

En el contexto del cambio climático, concretamente en los documentos editados por el IPCC, la vulnerabilidad se define como el grado de daño que el cambio climático puede producir en un sistema natural o social, y establece la vulnerabilidad en función de la susceptibilidad o sensibilidad (sensitivity) de un sistema a cambios en el clima y de la capacidad de adaptación (adaptive capacity) definida como el grado en el cual, ajustes en prácticas, procesos o estructuras pueden moderar o eliminar el daño potencial o permiten aprovecharse de las oportunidades creadas por un cambio dado en el clima. Este último concepto podría equivaler al concepto de resiliencia propuesto por otros organismos como la Comisión Europea (Schneiderbauer y Ehrlich, 2004).

Como se desprende de estas definiciones y de otras similares, el concepto de vulnerabilidad engloba un gran rango de factores ya que es necesario evaluar el grado de daño que el cambio climático puede producir en un sistema natural o social. Además, otros autores señalan el hecho de que la vulnerabilidad es (Birkmann, 2006):

- —Multidimensional y diferencial (varía en el espacio y entre y dentro de grupos sociales).
- —Dependiente de la escala (con respecto al tiempo, espacio y unidades de análisis como individuos, hogares, regiones, sistemas).
 - —Dinámica (las características y las causas de la vulnerabilidad cambian con el tiempo).

Debido a las múltiples facetas que presenta, la vulnerabilidad es muy difícil de medir por lo que no existe una metodología universal para su determinación y su análisis se debe adaptar a objetivos específicos y escalas adecuadas al contexto de la zona de estudio. Sin embargo, existe unanimidad acerca de que la vulnerabilidad debe tener en cuenta tres aspectos: medio físico, medio ecológico y medio socioeconómico. Por lo tanto, volviendo a la ecuación del riesgo de la metodología planteada, expresada en la ecuación (2.1), la vulnerabilidad de un tramo de costa, V_m , será la suma de la vulnerabilidad de todas las celdas (n) de ese tramo localizadas en la zona expuesta, V_{nm} , que a su vez, será función de la vulnerabilidad de cada uno de los tres sectores afectados: físico, V_{nm}^F , ecológico, V_{nm}^{ECO} y socioeconómico, V_{nm}^{SE} , esto es:

$$V_{nm} = f(V_{nm}^F, V_{nm}^{ECO}, V_{nm}^{SE})$$
 (2.5)

En este trabajo, la vulnerabilidad física de la costa, V_{nm}^F , está intrínsecamente considerada en el cálculo de los agentes y su incertidumbre. Es decir, en la evaluación del agente ya se ha introducido las características del tramo de costa considerado (pendiente, batimetría, tamaño de grano, tipo y orientación de la costa, rango de marea, etc.). Por lo tanto, la ecuación (2.5) queda:

$$V_{nm} = f(V_{nm}^F, V_{nm}^{ECO}, V_{nm}^{SE}) = f(V_{nm}^{ECO}, V_{nm}^{SE})$$
 (2.6)

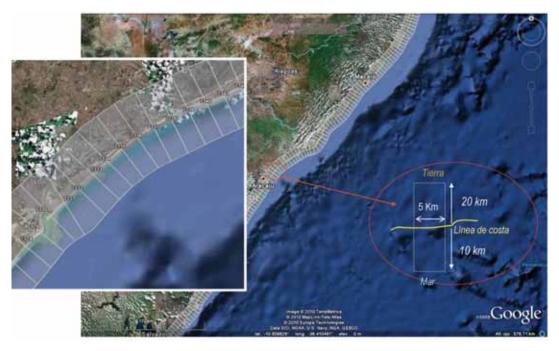
La vulnerabilidad ecológica, V_{nm}^{ECO} , y socioeconómica, V_{nm}^{SE} , de un tramo de costa, dependerá de los ecosistemas y actividades económicas y sociales que tengan lugar en ese espacio y la forma de abordar su valoración es función, como ya se ha mencionado, de la escala del estudio y de la información disponible. En este estudio se propone utilizar la expresión siguiente:

$$V_{nm} = f(V_{nm}^{ECO}, V_{nm}^{SE}) = V_{nm}^{ECO}, [V_{nm}^{SE}]$$
 (2.7)

Donde V_{nm}^{ECO} es un índice cualitativo que multiplica a V_{nm}^{SE} que representa el valor de los ecosistemas y de las actividades y usos en m^{-2} año⁻¹.

La parte que recoge la valoración de los ecosistemas (V_{nm}^{SE}) en este estudio se ha realizado mediante una actualización de Constanza y otros (1997) y ya recoge la ponderación de los ecosistemas entre sí en función de su funcionalidad, por lo que el índice ecológico (V_{nm}^{ECO}) pese a seguir siendo reflejo de la importancia de los ecosistemas en la clasificación establecida, no es necesario incluirlo en el cálculo de la vulnerabilidad agregada (ecuación 2.7).

En lo que sigue, toda la valoración de vulnerabilidad se realiza en dólares (\$) según Constanza y otros (1997). Sin embargo, la metodología propuesta permite utilizar otro tipo de valoración ya sea monetaria o mediante una escala numérica adimensional.


En los apartados siguientes se presenta, en primer lugar, la metodología general seguida en este estudio para establecer estos indicadores. En segundo lugar, una vez planteada la metodología general, se explica cómo se ha abordado, por un lado, el cálculo de la vulnerabilidad de la costa ante la **inundación**, asumiendo la costa como el soporte físico de un conjunto de ecosistemas y actividades humanas y, por otro, el cálculo más específico de la vulnerabilidad de tres elementos de la costa: (1) las **playas**, elemento natural y soporte de usos socioeconómicos; (2) un elemento perteneciente al sector socioeconómico, como son las **infraestructuras portuarias** y (3) un elemento que pertenece al sector de los ecosistemas como los **arrecifes de coral.**

2.2 Determinación de las unidades de estudio

Como se ha visto en el ejemplo de cálculo del riesgo presentado en el apartado 2, la aplicación de la ecuación del riesgo (2.2) requiere la discretización de la costa en tramos o unidades de estudio (véase figura 2.5). De acuerdo con la información disponible y la escala de trabajo, se define la escala espacial y se decide la discretización para calcular cada uno de los factores que intervienen en el cálculo del riesgo (agente o peligrosidad, exposición y vulnerabilidad). Por lo tanto, teniendo en cuenta el alcance del estudio y la información disponible, se ha adoptado una escala de trabajo de 5 km sobre la línea de costa, aproximadamente. Esto quiere decir, que todos los cálculos de impactos y de riesgo se realizarán en tramos de costa como los representados en la figura 2.6, donde cada celda tiene una anchura sobre la línea de costa (nivel medio del mar local, amarillo en la figura) de $\Delta L=5km$ y cubre una superficie delimitada por los vértices situados a 20 y 10 kms de la costa hacia tierra y hacia el mar, respectivamente.

Sin embargo, en aras de la representabilidad de los resultados, las unidades de 5 km son agregadas a una escala de 50 km de tal forma que los resultados sean visibles espacialmente en el análisis del presente documento.

FIGURA 2.6
UNIDADES DE ESTUDIO PARA EL CÁLCULO DEL RIESGO EN LA COSTA
DE AMÉRICA LATINA Y EL CARIBE Y ESQUEMA DE DIMENSIONES Y LÍNEA
DE COSTA EN UNA DE ELLAS (DERECHA)

Fuente: Elaboración propia a partir de Google Earth.

Nota: Se muestra el detalle de algunas unidades de estudio con la presencia de playas y una desembocadura en la costa de Brasil.

La generación de las unidades de estudio, explicada en el apartado dedicado a la metodología SIG (Sistemas de Información Geográfica) utilizada, se ha llevado a cabo en tres fases: 1) la línea de costa de todo el área de estudio ha sido dividida en secciones de 5 km; 2) Una vez obtenidos los 14.494 segmentos se ha ejecutado de forma automática la generación de polígonos que acotaran los vértices inicial y final de la línea y tuvieran una longitud en tierra de 20 km y 10 km hacia el mar; 3) finalmente, la obtención de los polígonos fue supervisada mediante reglas topológicas con el fin de comprobar posibles errores producidos en áreas complejas (véase apartado dedicado a la metodología SIG seguida).

En la generación de las unidades de estudio se han considerado los estuarios y los deltas abiertos al mar exterior. Aunque no se han incluido las lagunas costeras y las partes interiores de los estuarios con desembocadura de longitud menor a 5 km, de forma indirecta, estas masas de agua de pequeña escala, quedan recogidas y contempladas en cada unidad de estudio de la misma forma que los tipos de suelo, identificándose como área de agua, aunque no calificada como estuario.

El área delimitada por las unidades de estudio ha sido utilizada para obtener el Modelo Digital del Terreno (MDT) de la franja costera de interés (véase figura 2.7).

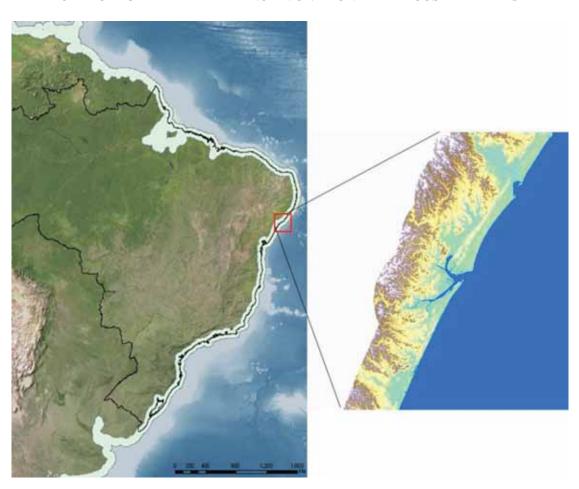


FIGURA 2.7
MODELO DIGITAL DEL TERRENO EN UNA ZONA DE LA COSTA DE BRASIL

Fuente: Elaboración propia.

Una vez obtenidas las unidades de estudio, en cada una de ellas se calculan los factores que componen el riesgo: por un lado, las dinámicas (agentes con su incertidumbre) y por otro la exposición y la vulnerabilidad de cada unidad de la costa. Nótese que para evaluar la vulnerabilidad es necesario definir los componentes o sectores susceptibles de ser afectados en cada tramo, tanto biológicos (ecosistemas) como socioeconómicos.

2.3 Proceso de cálculo mediante SIG

El modelo digital del terreno utilizado para la medida de las distintas variables entre cada celda y cota no tiene una referencia uniforme en todo el dominio de estudio puesto que la cota cero no puede ser la misma en zonas micro y macro mareales donde el rango de marea pueda afectar a las cotas 0 a 3 m (si se considera 0 m como el nivel medio del mar). Por esta razón, se ha considerado que el cero de referencia de la topografía se puede asumir como aquél correspondiente al percentil 2% (probabilidad de superarse de 0,02) de la serie de marea astronómica para cada punto. De esta manera se distingue entre el terreno afectado por el régimen intermareal y el que en condiciones habituales permanece seco.

En cualquier estudio que haga uso de bases de datos geo-referenciadas juega un papel principal el análisis mediante Sistemas de Información Geográfica (SIG), ya que este tipo de herramientas permite realizar análisis espaciales multicriterio, donde la combinación de multitud de variables es analizada espacialmente. En este proyecto, el software SIG utilizado ha sido ArcGis 9.2 y sus extensiones Spatial Analyst y 3D Analyst.

Llevar a cabo el estudio de la vulnerabilidad en un área de la extensión de ALyC y a las resoluciones planteadas, con la imposición adicional de homogeneidad y calidad de la información de partida, requiere una intensa búsqueda y organización previa de la información ecológica y socioeconómica.

A continuación se resume el proceso seguido para el análisis geoespacial desarrollado para el proceso y el cálculo de la vulnerabilidad en la región. Los sucesivos pasos que se han seguido han sido los siguientes:

- —Preprocesado de la información de partida, recorte a la franja costera de la información y reproyección de todas las capas de información a una proyección común donde se conserven las distancias y el área.
- —Delimitar y acotar el área costera a evaluar: definición de una línea de costa global para el área de estudio.
- —Creación de unidades de análisis a partir de la línea de costa objeto (en adelante también denominadas unidades o polígonos de estudio), que forman la unidad básica donde se proporciona resultados, tanto de los agentes como de la vulnerabilidad y riesgos.
- —Obtención de máscaras de inundación de 1 a 10 m contenidas en las unidades de análisis a partir del modelo digital del terreno (MDT).
 - —Obtención de la distribución espacial de variables ecológicas y socioeconómicas.
- —Cálculo del área total afectada de las variables, tanto las ecológicas como las socioeconómicas, a los diferentes niveles de inundación posibles.

2.3.1 Metodología

En este apartado se describe brevemente cada uno de los pasos seguidos para la obtención de las variables que definen la vulnerabilidad en las costas de ALyC.

2.3.1.1 Preprocesado y reproyección de las distintas capas

La variable "área afectada" es el elemento principal que permite evaluar la vulnerabilidad de cada una de las unidades de estudio. En este sentido, la selección de un sistema de proyección para todo el ámbito de estudio, América Latina y Caribe, que no distorsione el área afectada en latitud y longitud es un aspecto clave. El sistema de proyección seleccionado ha sido el "South America Albers Equal Area Conic-Projections". En esta proyección los meridianos se representan con rectas que convergen en un punto y los paralelos en forma de círculos concéntricos, formando en su intersección ángulos rectos y arcos de longitud homogéneos en un paralelo. Esto se traduce en la conservación correcta del área de la tierra y una mínima distorsión de otros parámetros como dirección o distancia.

FIGURA 2.8
MAPA MUNDIAL DE ALBERS EQUAL-AREA-CONIC PROJECTIONS

Fuente: Wikipedia (http://en.wikipedia.org/wiki/File:Albers_projection_SW.jpg).

Las herramientas SIG utilizadas en este apartado han sido:

- —"Define Projection": define el sistema de proyección original de la capa.
- "Project Raster": cambia la proyección de un raster basado en un número de parámetros definidos por el usuario, así como el tamaño de celda, entre otras opciones.
- —"Build Raster Atributte Table": construye la tabla de atributos asociada al raster.
- —"Clip": extrae la superficie común entre dos capas vectoriales superpuestas.

2.3.1.2 Delimitación y acotamiento del área costera a evaluar

La línea de costa inicial ha sido obtenida a partir del producto ESRI Data & Maps 9.3. Dicha línea ha sido simplificada eliminando aquellas islas no objeto de estudio y modificando el tramo en regiones como Patagonia y masas de agua de transición, ya que la multitud de islas y entrantes existentes no son necesarios.

La obtención de los puntos de inicio y final de cada tramo y su posterior unión permite crear una línea de costa menos sinuosa, lo que facilita el proceso de creación de las unidades de análisis.

La división en tramos se realiza con la herramienta "Divide de ArctoolBox" definiendo 5.000 metros en cada sección.

Creada la versión final de línea de costa, se pueden obtener los puntos medio de cada tramo y su respectivo azimuth (ángulo de dirección en el sentido de las agujas del reloj a partir del norte geográfico).

Como herramientas clave para este paso se pueden distinguir:

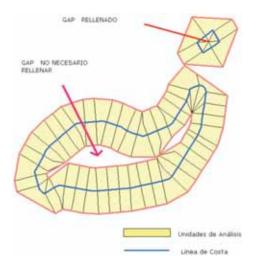
- —ArcGIS 9.2: Editor / ArcToolBox.
- —Función "Divide": división de líneas equidistantes.
- —Función "Feature Vertices to Point": extrae los puntos de inicio, final y medio de la línea a partir de un shapefile de líneas.
- —XTools Pro-"Make one Polyline From Point": crea una línea a partir de un shapefile de puntos.
- —Easy Calculate—"Azimuth": calcula el ángulo de una línea respecto al norte geográfico.

2.3.1.3 Creación de unidades de análisis a partir de la línea de costa objeto

Una vez dividida la línea de costa en tramos de 5 km, se construyen las unidades de estudio. Las unidades de análisis de la vulnerabilidad son áreas creadas a partir de las líneas de costa divididas cada 5 km, y delimitadas tierra adentro 20 km y 10 km hacia el mar.

Debido a la ausencia de herramientas que puedan llevar a cabo esta operación en los más de 72.000 km de costa de una manera rápida y automática, se ha desarrollado una herramienta de generación de unidades de análisis automática.

La siguiente imagen muestra la sinuosidad de la línea de costa en algunos tramos a pesar de su simplificación inicial y lo complejo del cálculo con base tan sólo en la línea de costa. Las líneas perpendiculares a la línea de costa se cruzan entre sí, por lo tanto las unidades de análisis resultante de geometría poligonal superpuestas y no son aptas para el estudio.


FIGURA 2.9

PROBLEMAS DE LA DEFINICIÓN DE LAS UNIDADES DE ESTUDIO CONSIDERANDO TAN SÓLO LA PERPENDICULARIDAD A LA LÍNEA DE COSTA BÁSICA

Fuente: Elaboración propia.

Este problema se ha resuelto a través de análisis topológicos. Se entiende como topología el conjunto de reglas y relaciones entre los elementos de una misma o distintas capas de información para que se consiga representar de forma más veraz la realidad. Este proceso de topología elimina la superposición descrita, además de los vacíos en islas de pequeñas dimensiones, creando un producto de unidades de estudio coherente y consistente en toda la región de estudio.

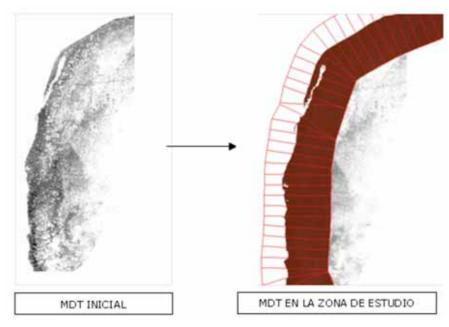
FIGURA 2.10
EJEMPLO DE UNIDADES DE ANÁLISIS DE LA VULNERABILIDAD EN UNA ISLA
TRAS APLICAR LA GENERACIÓN AUTOMÁTICA DE UNIDADES DE ESTUDIO

Fuente: Elaboración propia.

Las herramientas utilizadas en este apartado han sido:

- —"Create New File Geodatabase", "Create New Feature DataSet" y "Create New Topology"
- —Reglas topológicas utilizadas: "must not overlap" y "must not gaps", para corregir las geometrías superpuestas y los espacios en blanco.

2.3.1.4 Obtención de las máscaras de inundación entre 0 y 10, a partir del MDT


El modelo digital de elevaciones se reduce a la zona de estudio mediante la capa generada de unidades de análisis. La extracción de la zona de estudio a partir de los cuadrantes del STRM se lleva a cabo desde el ArcToolBox con la herramienta "Extract by mask".

Una vez recopilados todos los raster del MDT del área costera a analizar, se fusionan en uno solo con la herramienta "Mosaic to new Raster", resultando así un único modelo de elevaciones del ámbito de estudio.

El objetivo de este primer paso es crear máscaras de inundación desde 0 hasta 10 metros de cota topográfica a partir del modelo digital del terreno Shuttle Radar Topography Mission (SRTM). Para ello hay que reclasificar el STRM desde su menor valor hasta 0 m, 1 m y así sucesivamente, hasta llegar a los 10 m de inundación.

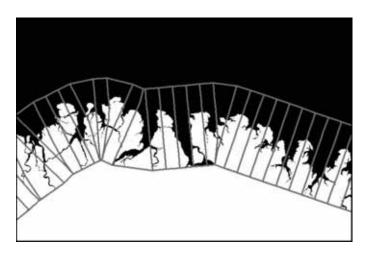
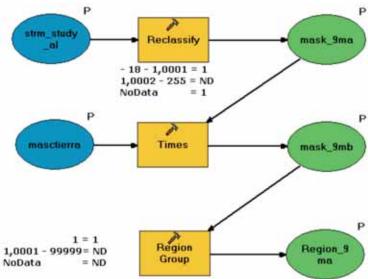

El resultado final son máscaras topográficas que representen la superficie de inundación si se produjera un aumento del nivel del mar. Estas área así delimitadas no son tan sólo para evaluar el daño directo (inundación) sino que sirven también para realizar un análisis de la vulnerabilidad de la franja costera frente a diversos impactos en las costas. Esta inundación ha de producirse en una superficie continua, por lo que se ha recurrido a unificar las celdas contiguas en ocho direcciones y eliminar las celdas no conectadas físicamente. La herramienta "Region Group" realiza este proceso.

FIGURA 2.11
MODELO DIGITAL DEL TERRENO EN LAS UNIDADES DE ESTUDIO
DE UN TRAMO DE LA COSTA DE AMÉRICA LATINA Y EL CARIBE

Fuente: Elaboración propia.


FIGURA 2.12 MÁSCARA DE INUNDACIÓN DEFINITIVA

Fuente: Elaboración propia.

El esquema de trabajo de la figura 2.13 refleja la metodología de creación de máscaras de inundación.

FIGURA 2.13
DIAGRAMA DE OBTENCIÓN DE LAS MÁSCARAS DE INUNDACIÓN

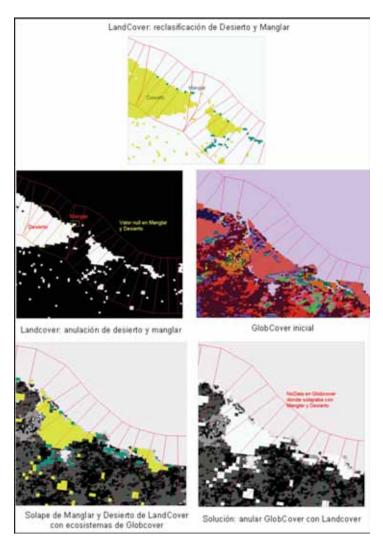
Fuente: Elaboración propia.

Nota: El Diagrama de obtención de máscaras de inundación se hizo a partir del Modelo Digital de Elevaciones (SRTM) con las herramientas de SIG: reclasificación de cotas de inundación, anulación de valores no incluidos en el estudio y selección de celdas contiguas simulando el flujo del agua.

En particular, las herramientas SIG utilizadas en esta etapa han sido:

- —*Extract by mask:* extrae de un raster la zona de estudio a través de un shape que actúa como máscara. *Snap raster* evita el movimiento de pixeles.
- -- Mosaic To New Raster: une o suma dos o más raster.
- —Reclassify: asigna nuevos valores a una malla.
- —Times: multiplica los valores de dos o más raster.
- —Region Group: asigna un único valor a aquellos pixeles contiguos en las direcciones deseadas.
- —Build Raster Attribute Table: construye la tabla de atributos a un raster.

2.3.1.5 Obtención de las variables ecológicas y socioeconómicas en el estudio de vulnerabilidad


El objetivo del análisis de vulnerabilidad es la definición de una serie de variables en los polígonos de estudio, por cotas, para conseguir evaluar la vulnerabilidad frente a los impactos del cambio climático en las costas, tanto en el sector ecológico como en el socioeconómico. Para ello, se debe contar con bases de datos contrastadas, homogéneas y georreferenciadas. Las capas de las variables que han sido utilizadas como inputs en los cálculos de la vulnerabilidad son las explicadas en el apartado de bases de datos de este documento.

Con el objetivo de analizar la valoración económica de los ecosistemas se ha preferido sintetizar la información ecológica de los usos del suelo de estas bases de datos y agregarlas a un número más sintetizado de ecosistemas en busca de la sencillez de análisis. Respecto a otros usos del suelo, por su interés e incidencia, se han analizado también las capas de cultivos y áreas artificiales (urbanas) del LandCover.

Respecto a las variables ecológicas, hay que destacar que para el análisis de ecosistemas se han utilizado dos fuentes de datos diferentes: GlobCover y Landcover. Ambos productos ofrecen una clasificación del terreno con diversas categorías de interés para el estudio. La superposición espacial de dichas categorías requiere la generación de un raster único con las categorías demandadas para el análisis. A continuación se explica el proceso seguido para la homogenización y unificación de esta información.

En primer lugar, se reclasifica los ecosistemas de LandCover de interés, que en nuestro caso son: Desierto y Manglar. Por otro lado se anulan los valores de desierto y manglar del LandCover que se superponen con ecosistemas del GlobCover. La intersección de ambas capas elimina las zonas de solape con desierto y manglar obteniendo así un GlobCover final modificado –figura 2.14–.

FIGURA 2.14
PROCESO DE CORRECCIÓN E INTEGRACIÓN DEL GLOBCOVER Y EL LANDCOVER

Fuente: Elaboración propia.

La clasificación original del GlobCover ha sido modificada con el fin de establecer la distribución de ecosistemas necesarios para este análisis a partir de los usos del suelo proporcionados por esta base de datos. Los ecosistemas obtenidos se recogen a continuación:

-Estuarios: código Globcover 170.

CEPAL

- -Marismas de agua salada: código Globcover 160.
- —Bosque perenne conífero; código Globcover 70.
- —Bosque caducifolio: código Globcover 50 y 60.
- —Bosque mixto: código Globcover 40, 90-110.
- —Zonas permanentemente cubiertas de hielo: código Globcover 220.
- —Pastizal y matorral: código Globcover 120-150 y 180.

Los ecosistemas obtenidos del Globcover y Landcover finales a evaluar son los siguientes:

CUADRO 2.3 LISTA DE ECOSISTEMAS CONSIDERADOS

Sistema acuático	Sistema terrestre
Humedales	Bosque
Estuarios	Perenne
Marismas de agua salada	Caduco
Manglares	Mixto
	Pastizal/Matorral
	Desierto
	Zonas permanentemente Cubiertas de hielo

Fuente: Elaboración propia.

Respecto a las variables socioeconómicas consideradas se han obtenido diversas variables:

Respecto a la población, la información de partida se ha reducido al ámbito de estudio gracias a un buffer costero de 30 km. Se ha convertido el tipo de valor de "Floating Point" a "Integer" para evitar errores de procesamiento. El mismo tratamiento se ha utilizado para el producto Interno bruto (PIB): se ha reducido al área de estudio a América Latina y el Caribe y se ha realizado la conversión a valores enteros. La renta se ha tratado como el producto del PIB y Población.

El grado de amenaza de los ecosistemas proviene de la cartografía vectorial de World Wildlife Fund (WWF), que clasifica el estado de las formaciones en tres tipos: vulnerable, crítico y relativamente estable.


La cartografía de áreas protegidas se ha reducido al ámbito de estudio cuyo objetivo es representar sólo aquellas unidades de análisis que contienen áreas protegidas.

Otras variables consideradas en el ámbito socioeconómico han sido las carreteras y ferrocarriles en la zona costera (Digital Chart of the World), donde se registra no la superficie sino la presencia o ausencia en cada máscara de inundación y por polígono; y el área de cultivos y de trama urbana, a partir del GlobCover.

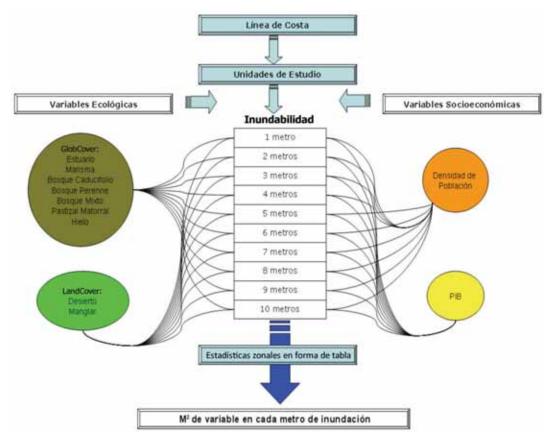
2.3.1.6 Cálculo del área total afectada de las variables de vulnerabilidad a diferentes niveles de inundación

Para el cálculo final de área, se ha hecho uso de la herramienta "Zonal Statistics as a Table" cuyo resultado es una tabla con información estadística para cada una de las unidades de estudio.

FIGURA 2.15 IMAGEN DE LA HERRAMIENTA PARA EL CÁLCULO DE LAS VARIABLES DE VULNERABILIDAD

Fuente: Software ArcGis-ESRI.

Esta herramienta requiere de la delimitación de una zona de estudio, del nivel de inundación, y una capa a analizar. El proceso analiza, limitándose al área de inundación de cada cota, y calcula estadísticos como el área, la media, el mínimo y el máximo, entre otros. Es necesario que el área de delimitación en cada cota contenga un código, el mismo que el de las unidades de análisis, ya que el cuadro resultante asigna a cada código, unidad de estudio, sus respectivos cálculos.

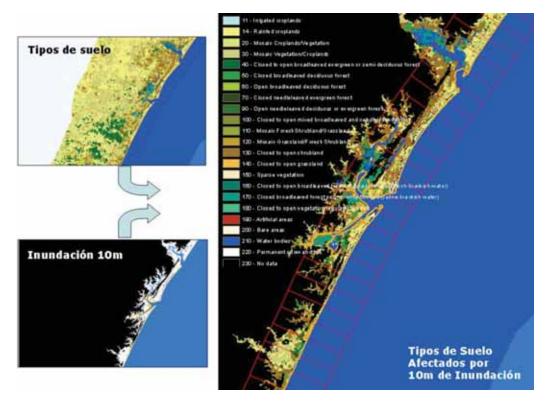

Gracias a esta herramienta se dispone del área de cada variable ecológica o socioeconómica inundada en las diferentes cotas de inundación establecidas, de 1 a 10 metros.

Las herramientas usadas en esta fase han sido:

—"Zonal Statistics as a table": calcula las estadísticas básicas de un raster delimitado por un shapefile.

La siguiente figura muestra un esquema operativo a modo resumen del proceso y de la información a evaluar. En este sentido para cada nivel de inundación se ha obtenido la superficie afectada de la variable de estudio, pudiendo, por ejemplo, evaluar el área de bosque caducifolio, manglar, desierto, etc. afectado en cada polígono de estudio para una cota dada.

FIGURA 2.16
DIAGRAMA DE TRABAJO DE LA SUPERFICIE AFECTADA EN CADA VARIABLE A
PARTIR DE LAS MÁSCARAS DE INUNDACIÓN ENTRE LAS COTAS 0 Y 10 M


Fuente: Elaboración propia.

De este modo, para cada uno de los segmentos de costa o unidades de estudio, se dispondrá de la superficie afectada de cada una de las variables de interés para los 10 niveles delimitados.

En el apartado 4 se proporciona información sobre la superficie de costa analizada, entre 0 y 10 m y la cubierta por las unidades de estudio, así como la proporción relativa respecto a la superficie de cada país.

Como ilustración del resultado del proceso de cálculos GIS (Geographic Information System) realizados, las figuras siguientes muestran tres tramos de costa con las unidades de estudio resultantes y la máscara de 10 m de nivel. Obsérvese que para el caso de las islas, gran parte del territorio (100% en el caso de la figura 2.19) ha sido estudiado por considerarse dentro de las unidades de estudio de la franja costera. En el caso de Jamaica, esta superficie también constituye una proporción significante del país (aproximadamente 74%), aunque poca superficie está por debajo de los 10 m (tan sólo el 6%, 17,6% en el caso de Aruba). La información para el resto de países se puede encontrar en el cuadro de superficies analizadas en el apartado 4.

FIGURA 2.17
EJEMPLO DE CÁLCULO DE LOS TIPOS DE SUELO A LA COTA 10 M A PARTIR
DEL GLOBCOVER MODIFICADO

Fuente: Elaboración propia a partir de datos de GlobCover.

FIGURA 2.18
UNIDADES DE ANÁLISIS Y MÁSCARA DE NIVEL 10 M EN JAMAICA

Fuente: Elaboración propia.

FIGURA 2.19 UNIDADES DE ANÁLISIS Y MÁSCARA DE NIVEL 10 M EN ARUBA

Fuente: Elaboración propia.

FIGURA 2.20 UNIDADES DE ANÁLISIS Y MÁSCARA DE NIVEL 10 M EN UN TRAMO DE LA COSTA DE BRASIL

Fuente: Elaboración propia.

2.4 Información compilada a través de imágenes de satélite

Una vez analizada la información existente, se ha detectado la carencia de información de alta resolución para determinar la vulnerabilidad en ciertos elementos de la zona más cercana a la línea de costa, como los puertos, las playas o la parte de las ciudades adyacentes al mar, en adelante denominado frente marítimo. Para cubrir esta falta de datos, y en vista de la resolución espacial de 5 km planteada en las unidades de estudio de la vulnerabilidad, se ha recurrido a la medición de datos sencillos usando imágenes de satélite de Google-Earth. A modo de ejemplo, se muestra en la figura 2.21 una visualización de este proceso, en aplicación a una parte de la costa de Brasil.

FIGURA 2.21
ILUSTRACIÓN DE POLÍGONOS DE RECOGIDA DE INFORMACIÓN SOBRE LA COSTA A TRAVÉS DE GOOGLE EARTH

Fuente: Elaboración propia.

Los datos obtenidos han sido los siguientes:

Playas: Longitud, orientación, anchura media y tipo de playa (encajada, rectilínea o puntal). El tipo de playa se distingue en función del transporte de sedimentos, distinguiendo: (1) playas encajadas: aquellas que encuentran confinamientos dentro de la unidad de estudio (5 km aproximadamente) y, por tanto, su transporte de sedimentos se encuentra delimitado en la propia unidad, (2) rectilíneas: aquellas cuyos límites de confinamiento exceden la unidad de estudio (5 km) y, por tanto, existe transporte de sedimentos entre unidades de estudio adyacentes y; (3) puntal: las que, siendo rectilíneas, en un extremo está dominado por la dinámica propia de una desembocadura, afectada tanto por la marea como por la dinámica fluvial.

Ciudades: Longitud de frente marítimo, entendido como la longitud aproximada de ciudad que se encuentra inmediatamente adyacente a la línea de costa. En el caso de que la línea de costa esté formada por playa, o costa sedimentaria, el frente marítimo correspondería con la longitud de playa en su totalidad o parte de la misma, según el caso, mientras que en el caso de costa rocosa, se contabiliza como "frente marítimo" pero no como "longitud de playa".

Puertos: Área de espejo de agua abrigada y longitud de los dique de defensa.

Desembocaduras: Anchura media de la desembocadura.

CUADRO 2.4 RESUMEN DE LA INFORMACIÓN RECOGIDA DE LAS IMÁGENES DE SATÉLITE DE GOOGLE-EARTH

				Playa			Ciudad		Puerto		Desembocadura
9		Orien- tación	Anchura	Tipo	playa (seña	lar la correcta)	Longitud	Lx puerto	Ly	Long	Anchura
TRAMO	piaya	playa Media	a Media Media Encajada Encajada	Rectilínea Puntual	de frente marítimo	(km)	puerto (km)	diques puerto (km)	Anchura (km)		

Fuente: Elaboración propia.

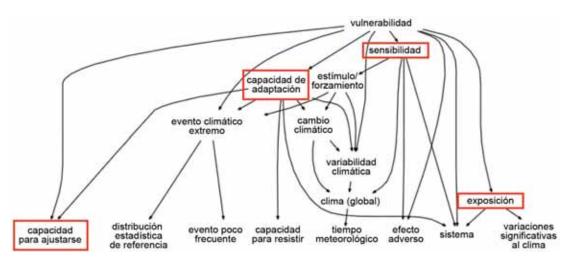
2.5 Índices de vulnerabilidad planteados

2.5.1 Índice de vulnerabilidad ecológica, V_{nm}^{ECO}

2.5.1.1 Conceptos y fundamentos de la vulnerabilidad ecológica

Los ecosistemas litorales son sistemas complejos, caracterizados por dinámicas no lineales, y por comportamientos limitadamente predecibles (Levin, 1999). A pesar de su carácter estocástico, son numerosos los trabajos científicos que ofrecen evidencias que demuestran cambios en su distribución como respuesta a los **efectos**, **amenazas**, **daños** o **impactos** producidos por el cambio climático. Siendo muchas las amenazas a las que se encuentran sometidos los ecosistemas costeros, el cambio climático es, probablemente, uno de los más directos y de mayor riesgo de cara al mantenimiento de la integridad de sus funciones y procesos naturales (Halpern y otros, 2007).

En el marco de este trabajo, el efecto del cambio climático sobre los ecosistemas de la costa de ALyC se determina mediante la **vulnerabilidad ecológica**, V_{nm}^{ECO} , concepto general que cuantifica su tolerancia y capacidad de adaptación y respuesta frente a esas amenazas externas. Williams y Kapustka (2000) definen la vulnerabilidad ecológica como el potencial del medio natural para modular sus respuestas frente a una amenaza en el tiempo y en el espacio. De acuerdo con ello, el cálculo de la vulnerabilidad ecológica requiere la identificación precisa: i) del **medio receptor** que, directa o indirectamente, puede estar expuesto a los **impactos** asociados al cambio climático en la costa (subida del nivel del mar, erosión, temperatura); y ii) de los **indicadores** utilizados para cuantificar la tolerancia (sensibilidad) y capacidad de adaptación del medio frente a esos impactos.


La vulnerabilidad ecológica puede ser aplicada a varios niveles jerárquicos: organismo, población, comunidad, ecosistema y paisaje (Ippolito y otros, 2009). Si bien, de acuerdo con los objetivos de este estudio, y con la escala de trabajo abordada, el nivel jerárquico elegido para analizar los efectos asociados al cambio climático en ALyC es el de ecosistema.

La vulnerabilidad de los ecosistemas debe abordarse a través de indicadores que permitan la transformación de conceptos teóricos, en conceptos con capacidad ejecutiva. Esta inferencia se lleva a cabo a través de funciones de variables, a las que se denomina variables indicadoras, que permitan predecir los posibles efectos futuros (Hinkel, 2011). Ante la ausencia de una propuesta de estimación de la vulnerabilidad ecológica frente al cambio climático estandarizado y reconocido globalmente, el modelo de referencia más extensamente aceptado es el del IPCC (Panel Intergubernamental de Cambio Climático) (figura 2.22). Esta aproximación integra los siguientes indicadores básicos de análisis:

- —La exposición del ecosistema, que determina la magnitud de la exposición frente a una amenaza (De Lange y otros, 2009).
- —La sensibilidad del ecosistema, entendida como los cambios en la biodiversidad estructural, y principales características funcionales del ecosistema como respuesta a una amenaza (De Lange y otros, 2009).
- —La capacidad de recuperación o de adaptación del ecosistema, grado en el que un ecosistema es capaz, o incapaz, de adaptarse a los cambios (De Lange y otros, 2009).

FIGURA 2.22

RELACIONES ENTRE EL CONCEPTO DE VULNERABILIDAD Y SUS ELEMENTOS
DE ANÁLISIS, DE ACUERDO CON LO ESTABLECIDO POR EL IPCC
(THIRD ASSESSMENT REPORT. WORKING GROUP 2)

Fuente: Hinkel, J. (2011), "Indicators of vulnerability and adaptive capacity: towards a clarification of the science-policy interface", Global Environmental Change, 21, 1, 198-208 | 10.1016/j.gloenvcha.2010.08.002.

2.5.1.2 Ecosistemas de América Latina y Caribe (ALyC)

a) Introducción a los ecosistemas de ALyC

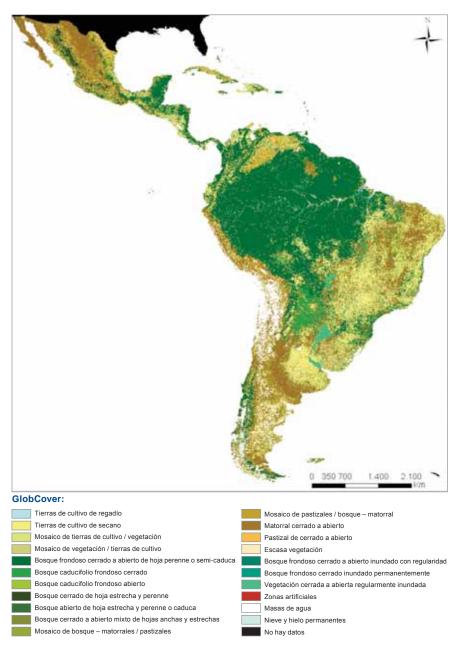
El término ecosistema, definido por Van Dyke (2003) como la interacción entre las comunidades bióticas con su medio físico, describe no sólo las relaciones que unen entre sí a los organismos (biocenosis), sino también sus relaciones con el medio. Esta es la diferencia básica entre ecosistema y bioma, concepto muy extendido en este tipo de aproximaciones que hace referencia a elementos territoriales que comparten clima, vegetación y fauna (Lacoste y Salanon, 1981). Un bioma, por tanto, lo conforman el conjunto de ecosistemas característicos de una región biogeográfica.

En ALyC se encuentran representadas gran parte de las nueve regiones bioclimáticas reconocidas por el modelo de clasificación de Walter (véase cuadro 2.5) a partir de condiciones de temperatura y precipitación. Además de los dominios ecuatorial, tropical o templado, esta parte del planeta contiene dominios tan singulares como el polar.

CUADRO 2.5 CLASIFICACIÓN BIOGEOGRÁFICA

Regiones	Clima	Vegetación
I. Ecuatorial	Siempre húmedo y carente de temperatura estacionales	Bosque de Iluvia tropical siempre verde
II. Tropicales	Temporada de verano lluviosa e "invierno" más fríos y secos	Bosque estacionales, matorral o sabana
III. Subtropical	Altamente estacional, clima árido	Vegetación del desierto con una superficie expuesta considerable
IV. Mediterráneo	Estación de invierno de lluvias y un verano con sequía	Esclerofilos (adaptado a la sequía), matorrales y bosques sensibles a las heladas
V. Templado cálido	Heladas ocasionales, a menudo con lluvias máximas de verano	Bosque templado siempreverde, poco sensible a las heladas
VI. Nemoral	Clima moderado con heladas invernales	Bosque templado, deciduo, resistente a las heladas
VII. Continental	Árido, con veranos cálidos o calientes e inviernos fríos	Pastizales y desiertos templados
VIII. Boreal	Templado frío, con veranos frescos e inviernos largos	Siempreverde, con bosques de aguja resistentes a las heladas (taiga)
IX. Polar	Veranos frescos muy cortos y largos inviernos muy fríos	Vegetación baja, perenne sin árboles, creciendo en suelos permanentemente congelados

Fuente: Walter, H., (1994), Zonas de vegetación y clima. Ed. Omega, Barcelona.


Sobre esta clasificación a escala biogeográfica, la información puede trasladarse a escala regional, produciendo esquemas individualmente complejos constituidos por comunidades vegetales propias que dotan a esta parte del planeta de una importante biodiversidad. Tal y como puede observarse en la figura 2.23, donde el satélite GlobCover identifica hasta un total de 45 formaciones vegetales distintas, gran parte de la superficie de ALyC está ocupada por ecosistemas naturales de gran valor ecológico e, incluso únicos a nivel mundial. Entre éstos cabe destacar los bosques tropicales (húmedo y seco), los arrecifes de coral, o los grandes deltas y estuarios.

b) Funcionamiento de los ecosistemas

La capacidad de adaptación de los ecosistemas está determinada, en gran medida, por la estabilidad del medio en el que se desarrollan. Esa estabilidad está relacionada con los regímenes de energía en que se crearon, y con los rangos de variación de las condiciones climáticas.

La capacidad de adaptación se reduce cuando se trata de ecosistemas creados en regímenes de baja energía (p.ej. sistemas dunares), o que se asientan en ambientes con una escasa, o nula, variabilidad estacional o diaria (p.ej. corales, ecosistemas tropicales y polares). Estos ecosistemas, acostumbrados a vivir en sistemas altamente estables, son especialmente sensibles a pequeñas variaciones del clima. Por ello, frente a cambios climáticos relativamente rápidos, responden lentamente (Magrin y otros, 2007), perdiendo de esta manera su capacidad de adaptación. Por el contrario, la adaptación se incrementa en ecosistemas altamente dinámicos, creados en regímenes de alta energía (p.ej. ecosistemas de arenas móviles), o sometidos a bruscos y/o intensos cambios estacionales y/o diarios (p.ej. ecosistemas de climas templados).

FIGURA 2.23
PATRÓN ESPACIAL DE DISTRIBUCIÓN DE LOS ECOSISTEMAS TERRESTRES
EN LA ZONA DE ESTUDIO DE ACUERDO CON EL SATÉLITE GLOBCOVER

Fuente: GlobCover.

Cada ecosistema responde con una tolerancia/sensibilidad distinta a los cambios de la(s) variable(s) climática(s), y esa respuesta no es lineal (Fischlin y otros, 2007). Gran parte de las respuestas iniciales de los ecosistemas indican una tolerancia a los cambios, pero si los umbrales de tolerancia se superan se produce una rápida amplificación de los efectos. Estos umbrales establecen, por tanto, el límite por encima del cual se producen cambios repentinos, y muchas veces irreversibles, en las variables de respuesta de los ecosistemas (Carpenter, 2003).

En este estudio se ha establecido la sensibilidad de los ecosistemas de ALyC a la(s) variable(s) climática(s) relacionadas con el cambio climático, a partir de la revisión de la literatura científica y de los trabajos desarrollados por el PNUMA (Programa de las Naciones Unidas para el Medio Ambiente) en el marco del World Conservation Monitoring Centre Climate Change and Biodiversity: Ecosystems. El resultado de este trabajo de revisión es el listado de ecosistemas y variable(s) climática(s) sintetizado en el cuadro 2.6.

CUADRO 2.6
ECOSISTEMAS Y VARIABLES CLIMÁTICAS A LAS QUE SON SENSIBLES
Y EFECTOS EN LA BIODIVERSIDAD

Ecosistemas	Variable(s) climática(s)	Implicaciones para la biodiversidad
Estuarios	 Aumento relativo del nivel del mar (Magrin y otros, 2007) Incremento altura ola (Jones y otros, 2001; Little, 2000) Temperatura del agua (Jones y otros, 2001) 	La dinámica de los estuarios está muy influenciada por la amplitud de la marea, especialmente en estuarios de poca profundidad. Esta influencia se reduce en estuarios con una limitada conexión con el exterior. Aunque frente a la subida del nivel del mar los estuarios tienen la capacidad de migrar tierra adentro, cuando están respaldados por tierras agrícolas o urbanas, que impiden su migración natural, pueden perderse hábitats de estuario. Muchas especies son tolerantes a los cambios de temperatura del agua (adaptaciones fisiológicas). Sin embargo, cambios severos de la temperatura en áreas intermareales producirían una reducción estacional de la riqueza y abundancia de las especies bentónicas.
Marismas costeras	Aumento relativo del nivel del mar (Little, 2000) Cambios en el balance hidrológico (UNEP, 2000) Frecuencia e intensidad de temporales (UNEP, 2000)	No soportan largos períodos de emersión. No suelen aparecer por debajo del nivel medio de marea, ni en zonas de acreción (acumulación de sedimento). Los cambios en el nivel del mar producen erosión en la marisma más exterior. Cuando esto sucede: i) se forma un pequeño salt marsh cliff (la parte superior de la vegetación se erosiona y la inferior sigue acumulando sedimento); y ii) la marisma, si no hay tierras agrícolas o urbanas, retrocede tierra adentro. Implicaciones sobre las especies migratorias y sus rutas de vuelo. La alteración de la variabilidad del régimen hidrológico reduciría la superficie de zonas húmedas y la diversidad biológica.
Manglares	 Aumento relativo del nivel del mar (Alongi, 2008; Little, 2000; Magrin y otros, 2007; Schaeffer-Novelli y otros, 2002) Cambios en el balance hidrológico de los estuarios (Alongi, 2008; Little, 2000) Frecuencia e intensidad de temporales (UNEP, 2000) Temperatura aire (Alongi, 2008; Kaiser y otros, 2005; Little, 2000; Magrin y otros, 2007) 	Pérdida de hábitat cuando éstos están respaldados por tierras agrícolas o urbanas que impiden su migración natural. Los efectos están determinados fundamentalmente por su localización relativa en la costa (lagunas vs mar abierto), y por la marea (régimen micro vs macromareal). Para mantener su posición relativa, frente a los cambios en el nivel del mar, pueden migrar hacia el mar, o tierra. El desplazamiento hacia tierra está limitado por la pendiente y la competición con otras especies vegetales. Si la pendiente lo permite, la superficie de manglar ganada hacia el interior, podría igualar a la perdida. Pero, si la pendiente es alta, no habría migración hacia la zona terrestre, se perdería el manglar y se incrementarían los procesos erosivos. Expansión del rango latitudinal de las especies más tolerantes a las variaciones térmicas del aire.
Costa	 Aumento relativo del nivel del mar Incremento altura ola (Jones y otros, 2001; Luning, 1990) 	Las comunidades intermareales son más vulnerables a la subida del nivel del mar que las submareales. Los cambios hidrodinámicos favorecerían procesos de sucesión ecológica. La modificación del rango de distribución de las comunidades de macroalgas, por ejemplo, es altamente dependiente de su tolerancia a la exposición y emersión, y la luz incidente.

(continúa)

(conclusión)

Ecosistemas	Variable(s) climática(s)	Implicaciones para la biodiversidad
Costa sedimentaria	Aumento relativo del nivel del mar (Anwar, 2009; Magrin y otros, 2007) Velocidad viento (Anwar, 2009) Cambios en el balance hidrológico (Anwar, 2009) Oleaje	Tanto las playas, como los sistemas dunares, pueden migrar tierra adentro como respuesta a procesos erosivos. Esta migración sólo se interrumpirá por barreras físicas (naturales o antrópicas). La vulnerabilidad frente a la subida del nivel del mar es elevada para playas estrechas, con dunas bajas y discontinuas, y escasa vegetación. El sedimento húmedo favorece la resistencia frente a la acción del viento. La precipitación influye en la cohesión del sedimento, en la colonización vegetal, en la reducción de la salinidad, en el desarrollo de suelo y en la fijación del sistema. Por ello, los elevados valores de precipitación de los trópicos incrementan la colonización vegetal.
Fanerógamas marinas	 Aumento relativo del nivel del mar (Björk y otros, 2008) Incremento altura ola (Borum y otros, 2004) Temperatura agua (Björk y otros, 2008; Borum y otros, 2004; Hogarth, 2007) 	Corrientes por encima de 1,5 m/s impiden el desarrollo de las comunidades de fanerógamas, y aumentan el efecto erosivo. En general, las especies intermareales soportan mejor amplios rangos de variación de la temperatura (<i>Z. noltii</i>). Toleran mejor las bajas temperaturas, pero si se superan los valores máximos de temperatura se produce un efecto letal.
Arrecifes de coral	Subida del nivel medio del mar (Sheppard y otros, 2009) Incremento altura de ola (Sheppard y otros, 2009; Wilkinson, 2008) Temperatura de la superficie del mar (Kaiser y otros, 2005; Sheppard y otros, 2009; Wilkinson, 2008) Efectos indirectos del incremento de CO2 en el agua (UNEP, 2000)	Tienen un crecimiento de 10 mm/año hasta 5-10 m de profundidad. A partir de esta profundidad las tasas de crecimiento se reducen, hasta que en aguas profundas el ritmo de erosión supera al de crecimiento. A 30 m de profundidad el crecimiento puede reducirse hasta un 30%. A escala local, el oleaje, las corrientes, la marea y los temporales determinan la estructura de la comunidad, la morfología del arrecife, la distribución de sedimentos, etc. Exposiciones prolongadas a temperaturas elevadas causan la decoloración de los corales, pudiendo ocasionar su muerte. El blanqueo se produce por una reducción o incremento de 1-2°C de la temperatura superficial del mar (SST) respecto el máximo valor medio mensual durante más de dos semanas. Estos impactos pueden verse agravados por los efectos químicos de incrementar las concentraciones de CO ₂ que podría reducir las tasas de calcificación (desarrollo del esqueleto, tasa de crecimiento).
Bosques	 Cambios en la precipitación, temperatura y evapotranspiración potencial (Fischlin y otros, 2007; Magrin y otros, 2007; UNEP, 2000). Aumento de la frecuencia de incendios (Fischlin y otros, 2007; Magrin y otros, 2007) 	Cambios importantes en los tipos de vegetación. Los bosques podrían desaparecer en algunas zonas a un ritmo más rápido que la tasa potencial de migración.
Pastizal, Matorral y Desierto (áridos y semiáridos)	Patrones de precipitación (Fischlin y otros, 2007; UNEP, 2000) Temperaturas mínimas aire en invierno (Fischlin y otros, 2007; Magrin y otros, 2007)	El cambio hacia un clima más cálido y seco conduciría incrementos de la aridez. Salinización, pérdida de pastizales y pérdida de tierras cultivables.

Fuente: Elaboración propia a partir de diversas fuentes.

2.5.1.3 Fuentes de información y criterios de asignación

A continuación se exponen las especificaciones técnicas relativas a: i) la escala de trabajo; ii) las fuentes de información; y iii) las singularidades de la zona de estudio.

Escala de trabajo

La escala básica de trabajo sobre la que se ha abordado el cálculo de la vulnerabilidad ecológica de los ecosistemas litorales han sido las unidades de estudio: secciones de 5 km de línea de costa con una profundidad en tierra de 20 km y de 10 km hacia el mar.

ii) Fuentes de información

Tal y como se ha indicado en el apartado 3, la información de la distribución espacial de los ecosistemas en ALyC procede íntegramente de mapas de la cobertura del suelo generados a partir de observaciones de satélite a escala global. Las fuentes de información utilizadas han sido Global Land Cover de National Mapping Organizations (año 2003; resolución de 1 km), y GlobCover de la Agencia Espacial Europea (años 2005 y 2006; resolución de 300 m). En el cuadro 2.7 se muestra la información aportada por estos satélites para la franja litoral y el ecosistema asignado en este estudio a cada nivel de clasificación dado por los satélites.

CUADRO 2.7 CLASIFICACIÓN DE LAS FORMACIONES VEGETALES EFECTUADA POR OBSERVACIONES DE SATÉLITE

Formaciones Vegetales del Globcover	Ecosistema
14 - Tierras de cultivo secano	Cultivo
20 - Mosaico tierras de cultivo/Vegetación	Cultivo
30 - Mosaico de vegetación/Tierras de cultivo	Cultivo
40 - Bosque frondoso cerrado a abierto de hoja perenne o semi-caduca	Bosque mixto
50 - Bosque caducifolio frondoso cerrado	Bosque caducifolio
60 - Bosque caducifolio frondoso abierto	Bosque caducifolio
70 - Bosque cerrado de hoja estrecha y perenne	Bosque perenne
90 - Bosque abierto de hoja estrecha y perenne o caduca	Bosque mixto
100 - Bosques cerrado a abierto mixto de hojas anchas y estrechas	Bosque mixto
110 - Mosaico de bosque-matorrales pastizales	Bosque mixto
120 - Mosaico de pastizales/ Bosque-matorral	Matorral/pastizal
130 - Matorral cerrado a abierto	Matorral/pastizal
140 - Pastizal cerrado a abierto	Matorral/pastizal
150 - Escasa vegetación	Matorral/pastizal
160 - Bosque frondoso cerrado a abierto inundados con regularidad	Marisma
170 - Bosque frondoso cerrado inundados permanentemente	Estuario
180 - Vegetación cerrada a abierta regularmente inundada	Matorral/pastizal
210 - Masas de agua	Masas de agua
220 - Nieve y hielo permanente	Zonas heladas permanentemente
8 - Manglar	Manglar
19 - Desierto	Desierto y Playa

Fuente: Elaboración propia a partir de datos de GlobCover y LandCover.

Como se aprecia, estas fuentes aportan información de detalle de los ecosistemas terrestres comprendidos desde la línea de costa, hasta una distancia máxima de 20 km tierra adentro (límite terrestre de la unidad de estudio). En el caso de los ecosistemas acuáticos, por el contrario, la información aportada por las bases de datos disponibles es sesgada. Como se aprecia en el cuadro 2.7 hay una serie de ecosistemas, con una presencia relevante en la costa de ALyC, sobre los cuales no hay información sobre su distribución espacial, concretamente:

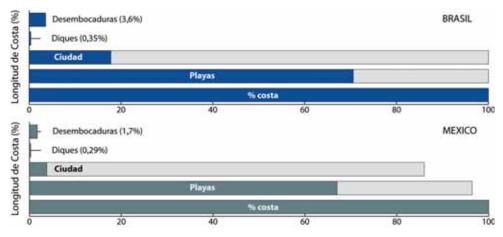
- —Humedales: estuarios, lagunas costeras y deltas.
- —Ecosistemas marinos: costa rocosa, playas/dunas y fanerógamas marinas.

El producto GlobCover es una interpretación de la señal de las formaciones vegetales presentes en cotas que están por encima de la línea de costa. Las imágenes obtenidas, sin embargo, no proporcionan información sobre ecosistemas marinos (costa rocosa, fanerógamas, etc.), ni discrimina entre los distintos ecosistemas acuáticos (estuarios, deltas, etc.) a los que trata conjuntamente como masas de agua. Ante la imposibilidad de discretizar la categoría de masa de agua en ecosistemas acuáticos específicos (p.ej. estuarios, deltas, lagunas costeras, fanerógamas marinas, etc.), la información de esta clasificación no se ha considerado. En el caso de los estuarios esta deficiencia se ha resuelto parcialmente (gran parte de la superficie acuática de los estuarios ha quedado sin asignar) clasificando dentro de esta categoría las formaciones vegetales permanentemente sumergidas por aguas salinas y salobres.

Otro tipo de limitación está asociado al reconocimiento de los pastizales y matorrales, ecosistemas que, si bien están muy ligados entre sí, presentan características estructurales y funcionales distintas. En muchos casos, la información de las imágenes de satélites reconoce mosaicos de formaciones vegetales (p.ej. bosque, pastizal y matorral) que no pueden desagregarse. El caso más frecuente es el de pastizales y matorrales. La solución adoptada ha sido agruparlos en un único ecosistema y atribuirles el mismo valor de vulnerabilidad ecológica.

Las imágenes de satélite de Land Cover, de menor resolución, se han utilizado únicamente para identificar dos ecosistemas no reconocidos por GlobCover: manglar (cobertura arbórea, regularmente inundada por agua salina) y desierto (< 4% de cubierta vegetal: incluye roca desnuda, arena y desierto). Para evitar duplicar la información (asignar a una misma unidad cartográfica dos ecosistemas distintos), las imágenes de Land Cover se han proyectado sobre GlobCover, y en el territorio clasificado como manglar o desierto la asignación otorgada por GlobCover ha sido anulada.

iii) Singularidades de la zona de estudio


Los arrecifes de coral se encuentran entre los ecosistemas marinos más diversos del planeta pero, también, entre los más amenazados. En las últimas décadas este ecosistema ha experimentado un declive extensivo a todo el planeta debido a un incremento en la incidencia de los episodios de blanqueo masivo (Harrell y Barron, 2010). El riesgo de que en el futuro los efectos del cambio climático produzcan reducciones más severas de este ecosistema es, por tanto, muy significativo. La información cartográfica de los arrecifes de coral en ALyC se ha extraído del sitio Web "Reefs at Risk" (resolución de 4 km) del World Resources Institute (www.reefsatrisk.wri.org).

Atendiendo a su valor ecológico e importancia socioeconómica, las playas/sistemas dunares constituyen un elemento altamente singular de la costa de ALyC. En tanto que ninguna de las dos fuentes de información cartográfica utilizadas reconoce explícitamente este ecosistema, para su delimitación se han establecido restricciones a la clasificación de desierto. El criterio utilizado para segregar playa/ sistema dunar y desierto ha sido la cota de 5 metros de altura.

Para el cálculo de superficie ocupada por el ecosistema playa, se ha realizado una identificación visual a escala de 5 km en Google-Earth, además se han identificado mediante este procedimiento los ecosistemas deltas y costa rocosa. Como ejemplo, en la figura 2.24 se representan para la costa de Brasil y México, los dos países con mayor longitud total, la longitud de costa con playa, con frente marítimo

urbanizado, longitudes de diques de los puertos y anchura de las desembocaduras encontradas. Recoger esta cantidad de información para el dominio de ALyC ha supuesto un esfuerzo considerable y una importante labor de control de calidad y de síntesis de los resultados obtenidos.

FIGURA 2.24
LONGITUD DE COSTA DE BRASIL Y MÉXICO, DISTINGUIENDO LONGITUD
DE PLAYAS, FRENTE MARÍTIMO (CIUDAD), DIQUES Y DESEMBOCADURAS
(Porcentaje)

Fuente: Elaboración propia.

En el cuadro 2.8. se recoge el listado de ecosistemas que finalmente se han considerado en este estudio.

CUADRO 2.8
ECOSISTEMAS ACUÁTICOS Y TERRESTRES DE LOS CUALES EXISTE
INFORMACIÓN SOBRE SU DISTRIBUCIÓN ESPACIAL EN LA FRANJA LITORAL
DE AMÉRICA LATINA Y EL CARIBE

Sistema acuático	Sistema terrestre
Humedales	Bosque
Estuarios	Perenne
Marismas de agua salada	Caduco
Manglares	Mixto
Ecosistemas marinos	Pastizal/Matorral
Costa sedimentaria: Playas	Desierto
Arrecifes de coral	Zonas permanentemente cubiertas de hielo

Fuente: Elaboración propia.

2.5.1.4 Cálculo de la vulnerabilidad ecológica, V_{nm}^{ECO}

a) Indicadores de la vulnerabilidad ecológica

El índice de vulnerabilidad ecológica, V_{nm}^{ECO} , propuesto en este trabajo estima la capacidad de respuesta de los ecosistemas frente a los impactos relacionados con el cambio climático considerados (inundación y variación de la temperatura del mar), siendo su objetivo último dar respuesta a cuestiones tales como: ¿Cuáles son los impactos del cambio climático más relevantes para los ecosistemas de la costa?, ¿Qué ecosistemas son más vulnerables? o ¿Dónde se puede actuar para reducir la vulnerabilidad?

 V_{nm}^{ECO} valora la vulnerabilidad ecológica con base en la respuesta de los ecosistemas. Sin embargo, la resolución espacial de su cálculo varía en función de los impactos analizados.

Cuando se analiza el riesgo por inundación, se calcula un valor de V_{nm}^{ECO} para la superficie de la unidad de estudio inundada en función de los niveles de cotas de inundación en los que se discretiza. En cambio, cuando se analiza el riesgo en los corales por incremento de la temperatura del mar, la resolución espacial de V_{nm}^{ECO} corresponde a la parte acuática de la unidad de estudio.

Teniendo todo esto en cuenta, se propone un índice formado por: indicadores de la magnitud del daño ambiental (grado de protección), de la sensibilidad y de la singularidad de los ecosistemas.

$$V_{nm}^{ECO} = f(I_{nm}^P, I_{nm}^{SG}, I_{nm}^S)$$
 (2.8)

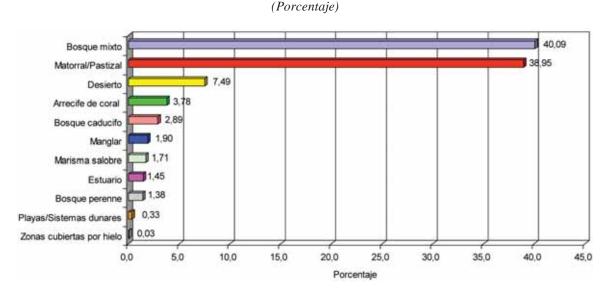
El indicador grado de protección, $I_{nm}^{\ P}$, es una medida del valor ambiental de la unidad de estudio que cuantifica el daño ambiental. Su valoración se lleva a cabo considerando la existencia de alguna figura de protección de ámbito local, regional, nacional, y/o internacional (http://www.wdpa. org/; http://www.unep-wcmc.org/protected_areas/protected_areas.htm) y asume que la protección de un determinado espacio es por sí misma un reconocimiento explícito del valor ambiental de los recursos que alberga. La cuantificación del grado de protección considera dos únicos criterios de valoración: no protegido $(I_{nm}^{\ P}=1)$ y protegido $(I_{nm}^{\ P}=2)$ (véase cuadro 2.9).

CUADRO 2.9
CRITERIOS DE VALORACIÓN DEL GRADO DE PROTECCIÓN DE LOS ECOSISTEMAS

Grado de protección	I_{nm}^{P}
No protegido	1
Protegido	2

Fuente: Elaboración propia.

El indicador de singularidad, I_{nm}^{SG} , es una medida de la importancia relativa de los ecosistemas en relación con la superficie que ocupan en ALyC y en la unidad de estudio.


El valor de la singularidad de los ecosistemas se determina de acuerdo con el siguiente procedimiento:

En primer lugar, se estima la singularidad de cada ecosistema en ALyC en función de la superficie relativa del mismo. Para ello se calcula la superficie que ocupa cada ecosistema respecto de la superficie total de estudio (el ocupado por todas las unidades de estudio). Por ejemplo, la singularidad de los manglares se obtiene mediante la expresión:

$$\frac{\sum_{j=1}^{N} m^2 \ manglar_j}{\sum_{j=1}^{N} m^2 \ u_j} \ x \ 100$$
 (2.9)

Donde *N* es el número de unidades de estudio, *u*. En la figura 2.25 se recogen los resultados al aplicar la ecuación anterior a cada ecosistema y en el cuadro 2.10 el valor de singularidad asignado a cada uno de ellos. Como se puede observar en el cuadro 2.11, la escala de singularidad establece tres niveles de clasificación: muy singular, moderadamente singular y poco singular. Los criterios y umbrales entre los tres niveles de clasificación se han adoptado parcialmente de las propuestas elaboradas por IHCantabra para los espacios Natura 2000 en Cantabria (IHCantabra, 2010). Los resultados obtenidos identifican como los ecosistemas más singulares a las zonas cubiertas de hielo, las playas/sistemas dunares, los bosques perennes, los estuarios, marismas y manglares, con una representación menor del 2% en el total de las unidades de estudio de ALyC. Por el contrario, matorral/pastizal y bosque mixto, presentes en más del 10% de la superficie considerada, son los ecosistemas mejor representados y, por tanto, menos singulares.

FIGURA 2.25
SUPERFICIE RELATIVA DE LOS ECOSISTEMAS EN EL ÁREA OCUPADA POR LAS UNIDADES DE ESTUDIO DE AMÉRICA LATINA Y EL CARIBE

Fuente: Elaboración propia a partir de datos de STRM-90 y GlobCover.

CUADRO 2.10 CRITERIOS PARA LA VALORACIÓN DE LA SINGULARIDAD DE LOS ECOSISTEMAS

Porcentaje del ecosistema en ALyC	Ecosistemas	Ecosistemas
≥10%	Poco singular	Matorral/pastizal, Bosque mixto
2-10%	Moderadamente singular	Desierto, Bosque caducifolio, Arrecife de coral
≤2%	Muy singular	Zonas cubiertas de hielo, Playas/sistemas dunares, Bosque perenne, estuario, marisma, manglar

Fuente: Elaboración propia.

El siguiente paso consiste en la asignación de la singularidad de cada unidad de estudio frente al impacto inundación. Debido a que puede ocurrir que en una unidad de estudio que está siendo inundada existan varios ecosistemas con diferente singularidad calculada según el cuadro 2.10, se ha desarrollado una metodología para asignar la singularidad en ese caso. En el cuadro 2.11 se indican los criterios utilizados para establecer la singularidad del área inundada de una unidad de estudio (IHC, 2010). El criterio de asignación es jerárquico y, como tal, la asignación se hace siguiendo un esquema de clasificación vertical en el que las condiciones de la parte superior del cuadro prevalecen sobre las de la parte inferior.

CUADRO 2.11
CRITERIOS PARA ESTABLECER EL VALOR DE SINGULARIDAD DEL ÁREA
INUNDADA DE UNA UNIDAD DE ESTUDIO

Singularidad de los ecosistemas inundados (porcentaje del área total inundada)	Singularidad	I_{nm}^{SG}
>10% Muy singular en ALyC	Muy singular	3
>20% Moderadamente singular en ALyC	Moderadamente singular	2
Resto de situaciones	Poco singular	1
No hay inundación	No singular	0

Fuente: Elaboración propia.

Asignación de la singularidad de cada unidad de estudio frente al impacto blanqueo de arrecifes coral por incremento de la temperatura del mar. En este caso, el valor de singularidad de las unidades de estudio se calcula con base en la singularidad del ecosistema arrecife de coral (muy sensible a esta variable climática). En cada unidad de estudio el valor de singularidad se establece en función del porcentaje de su parte acuática ocupada por coral (cuadro 2.12). Como se ve, el umbral de discriminación se ha establecido en el 5% de superficie de la unidad de estudio. Cuando la superficie acuática ocupada por coral es \geq 5%, el valor de singularidad de la unidad de estudio se corresponde con la singularidad de los arrecifes de coral en ALyC (valor 2: moderadamente singular en el cuadro 2.10). En caso contrario, la unidad de estudio es No singular (valor 0).

CUADRO 2.12
CRITERIOS PARA ESTABLECER EL VALOR DE SINGULARIDAD DE UNA UNIDAD
DE ESTUDIO FRENTE A INCREMENTOS DE LA TEMPERATURA DEL MAR

Porcentajes de la parte acuática de la unidad de estudio ocupada por coral	Singularidad	I_{nm}^{SG}
≥5% Arrecife de coral	Moderadamente singular	2
<5% Arrecife de coral	No singular	0

Fuente: Elaboración propia.

Siguiendo con la ecuación 2.8, el indicador de sensibilidad, I_{nm}^{SG} , o tolerancia de un ecosistema, es una medida de los cambios en la biodiversidad estructural y principales características funcionales del ecosistema como respuesta al cambio de los agentes que pueden alterarlo (De Lange y otros, 2009). En una escala de trabajo local (microescala), este indicador tendría en cuenta los rangos de

tolerancia del ecosistema (umbrales de tolerancia). No obstante, en la macroescala aplicada en este trabajo, una aproximación de detalle de estas características resulta inabordable. De acuerdo con ello, la sensibilidad de cada ecosistema se determina con base en su sensibilidad a los impactos considerados. La cuantificación de este indicador considera dos únicos criterios: no sensible (I_{nm}^{SG} =1) y sensible (I_{nm}^{SG} =2). En el cuadro 2.13 se presenta el valor de este indicador para cada ecosistema y para cada impacto. Estos valores son resultado de la revisión científica efectuada y representan una síntesis de las conclusiones expuestas en el cuadro 2.14.

CUADRO 2.13 VALORACIÓN DEL INDICADOR I^{SG}_{nm}

Ecosistemas	Impacto			
	Inundación (Aumento relativo del nivel del mar)	Erosión	$\Delta T_{_{agua}}$	
Estuarios	2	2	2	
Marismas de agua salada	2	2	2	
Manglares	2	2	2	
Deltas	2	2	2	
Costa rocosa	1	2	1	
Costa sedimentaria	1	2	1	
Arrecifes de coral	1 (*)	2	2	
Bosque	2	1	1	
Pastizal	2	1	1	
Matorral	2	1	1	
Desierto	2	1	1	
Zonas permanentemente cubiertas de hielo	2	1	2	

Fuente: Elaboración propia.

Como ya se ha indicado, una unidad de estudio o área inundada puede albergar más de un ecosistema, cada uno de ellos con un valor específico de sensibilidad. La integración de estos valores para obtener un valor único de sensibilidad a escala de cada unidad de estudio se lleva a cabo utilizando el método del valor crítico. Este método, basado en el principio de "uno fuera, todos fuera", consiste en la valoración independiente de cada uno de los ecosistemas presentes y en la asignación del valor más restrictivo como valor final de la unidad de estudio.

b) Sistema de valoración de la vulnerabilidad ecológica V_{nm}^{ECO}

La integración de los tres indicadores para obtener el valor de la vulnerabilidad ecológica, V_{nm}^{ECO} , se realiza mediante la siguiente expresión:

$$V_{nm}^{ECO} = (I_{nm}^P + I_{nm}^{SG})I_{nm}^S (2.10)$$

^(*) Aumento relativo del nivel del mar en 1 m.

Esta formulación otorga un peso específico a los dos términos del índice más determinantes: la sensibilidad (factor multiplicativo) y la singularidad (único indicador valorado con base en tres niveles de clasificación). La sensibilidad es el indicador que identifica los ecosistemas que pueden experimentar con una mayor intensidad los efectos del cambio climático y, como tal, es el más directamente relacionado con su efecto. La singularidad, por su parte, cuantifica la importancia relativa de los ecosistemas susceptibles de verse afectados por el cambio climático. Al contrario que el grado de protección, la valoración de estos indicadores no está sujeta, en ningún caso, al contexto socioeconómico de la unidad de estudio.

Finalmente, para obtener el índice de vulnerabilidad ecológica, V_{nm}^{ECO} , se ha aplicado la escala de valoración que se muestra en el cuadro 2.14. Esta formulación establece los umbrales para reconocer los tres posibles niveles de vulnerabilidad ecológica, V_{nm}^{ECO} : No vulnerable, Vulnerable y Muy vulnerable.

CUADRO 2.14
VALORACIÓN DEL INDICADOR V_{nm}^{ECO}

$(\boldsymbol{I}_{nm}^{P} + \boldsymbol{I}_{nm}^{SG})\boldsymbol{I}_{nm}^{S}$	Vulnerabilidad ecológica	V_{nm}^{ECO}
<4	No vulnerable	1
$4 \le (I_{nm}^P + I_{nm}^{SG})I_{nm}^S < 8$	Vulnerable	2
≥8	Muy vulnerable	3

Fuente: Elaboración propia.

Esta formulación del índice, garantiza que las unidades de estudio ocupadas íntegramente por entidades socioeconómicas (p.ej. cultivos agrícolas, zonas industriales, ciudades) tengan un valor mínimo de V_{nm}^{ECO} (valor 1, no vulnerable).

2.5.2 Vulnerabilidad socioeconómica, V_{nm}^{SE}

Como indica la ecuación 2.8, el segundo factor del que depende la vulnerabilidad de cada celda n incluida en cada tramo m es la vulnerabilidad socioeconómica, V_{nm}^{SE} . El objetivo de este indicador es proporcionar una valoración, en clave económica, tanto de los activos naturales como de las actividades humanas, que se van a ver afectados por las alteraciones en la costa derivadas del cambio climático. Por lo tanto, se plantea la siguiente expresión:

$$V_{nm}^{SE} = D_{nm}^{ECO} + D_{nm}^{SE} (2.11)$$

Donde D_{nm}^{ECO} representa el valor de los ecosistemas (\$ m⁻²año⁻¹) que existen en la celda (n,m) y D_{nm}^{SE} es el valor de las actividades y usos (\$ m⁻²año⁻¹) de esa celda.

En los siguientes apartados se revisan los problemas metodológicos que subyacen a los indicadores elaborados para la evaluación de los impactos, se describen las bases conceptuales en las que se ha basado este estudio, se presenta la metodología propuesta y, finalmente, se proponen mejoras y desarrollos complementarios.

2.5.2.1 Valoración económica de activos ambientales: Obtención de D_{nm}^{ECO}

Como se indica en la ecuación 2.11, la valoración del impacto de los fenómenos derivados del cambio climático sobre el medio socioeconómico, D_{nm}^{SE} , representa solamente una parte de la vulnerabilidad. Para ofrecer una imagen fiel del impacto es necesario incluir aquellos aspectos, valores y servicios derivados del medio natural que al no estar contabilizados en los distintos capítulos del producto interno bruto

(PIB), no se observan en el sistema de cuentas nacionales, y que a su vez se ven alterados por los cambios ambientales previstos.

Este problema es uno de los principales retos que han de abordar los Sistemas de Contabilidad Nacional en los nuevos marcos promovidos desde las Naciones Unidas. Del avance de la implantación de este marco regulatorio se derivará una mejora sustancial en la calidad y cantidad de los datos disponibles sobre el conjunto de bienes y servicios que derivamos del medio ambiente y que contribuyen a nuestro bienestar y, por tanto, de la valoración de los recursos ambientales que los generan.

Dado que estos sistemas contables no están disponibles, al menos con generalidad, se ha recurrido a un esquema de meta-análisis que permite capturar datos y valoraciones generadas en entornos y contextos distintos e integrarlos en nuestro estudio. Para ello la metodología habitual (Constanza y otros, 1997) procede de acuerdo con el modelo explicado a continuación.

La contribución de un activo natural a nuestro bienestar se mide por el valor de los servicios prestados, y éstos, pese a la complejidad de los fenómenos naturales, se tratan como servicios independientes. Así, un manglar o una marisma se comporta como una fuente de biodiversidad, un soporte para la producción pesquera, un sistema de regulación hidráulica y un elemento capaz de controlar y depurar vertidos residuales, cada uno de ellos susceptible de ser valorado. Se plantea la traslación de los valores medidos en entornos ambientales específicos a todos los espacios equivalentes.

Cada uno de los servicios prestados por un medio es cuantificable ya sea por el valor del servicio alternativo ahorrado, o bien por el valor de su contribución al PIB, aunque esa cuantificación no haya sido expresada en un lugar, situación y momento específico.

Junto a los valores derivados de la interacción con el medio ambiente como una componente de la función de producción, se plantea la existencia de unos valores a medir derivados de la incorporación de las características y propiedades del medio directamente a la función de bienestar a través de su carácter como proveedor de servicios directos al consumidor. Se trata ahora de valorar servicios recreativos, culturales, etc., por parte de una sociedad que disfruta de ellos a través de servicios facturados, o a través de valoraciones subjetivas. El mero hecho de que una sociedad se muestre dispuesta a emplear sus recursos o a renunciar a consumir eventuales beneficios para preservar determinados entornos permite identificar los valores que las sociedades afectadas atribuyen a dichos entornos.

La dimensión del servicio específico (sea cual sea el mecanismo de su provisión) debería ser cuantificable a través de parámetros objetivos que permitan la elaboración de unos indicadores genéricos aplicables a situaciones distintas de aquellas en que fue específicamente calculado. Se trata de poder construir una "función de transferencia" que nos permita generalizar la información recogida en cada análisis específico y extraer de ella un modelo abstracto aplicable a distintos casos. Sin embargo, este mecanismo requiere un análisis específico que permita comparar las condiciones en que las mediciones y análisis se han realizado (lo que resulta posible aunque laborioso) con las condiciones de los espacios afectados a escala continental (lo que resulta inabordable).

En este trabajo se han adoptado unos ratios estándar de valoración (Constanza y otros, 1997) de los ecosistemas identificados (véase cuadro 2.8). El desarrollo de estudios de detalle a escala más fina supondrá la ocasión idónea para profundizar en las características de los entornos afectados y desarrollar en detalle dichas valoraciones.

a) Limitaciones del modelo adoptado y propuestas de mejora

El problema del modelo adoptado para obtener D_{nm}^{ECO} se centra en el carácter específico de las valoraciones de partida. El ratio de valor que se adopta se deriva de uno o varios estudios que están condicionados por el contexto social de los sujetos cuya valoración se capta, por el contexto natural del activo valorado y por las metodologías adoptadas.

Contexto social: la valoración de un activo natural es, en definitiva, la comparación entre el valor o utilidad colectiva percibido, que deriva de los servicios realmente percibidos o de las expectativas de valor futuro, y por otro lado, una valoración patrón de una inversión económica específica o de una magnitud económica general como la renta. Sin embargo, este proceso se ve alterado si realizamos traslaciones de valor entre sociedades distintas, que ni perciben los servicios presentes y futuros con la misma importancia, ni tienen un mismo patrón económico de comparación.

Vulnerabilidad y exposición

Contexto natural: la valoración de un activo natural implica un proceso de percepción y análisis de la función que desempeña en una sociedad concreta. Esa percepción no es necesariamente homogénea entre países, no porque los sujetos tengan distinto punto de vista, sino porque el papel desempeñado por los distintos servicios puede no ser homogéneo entre sociedades.

Contexto metodológico: existe en la literatura científica amplia evidencia de la existencia de sesgos y diferencias de resultados derivados de los enfoques metodológicos adoptados. El tratamiento de estos problemas en estudios de detalle para mejorar la calidad de los ratios individuales que se introducen, conforman una línea de trabajo que enriquecerá de forma continuada la calidad del análisis.

2.5.2.2 Desagregación espacio-temporal de datos para obtener D_{nm}^{SE}

La obtención de datos desagregados a partir de fuentes agregadas es un problema básico en el ámbito de la economía aplicada. Sin embargo, en el marco de esta disciplina está, en la actualidad, en proceso de elaboración un modelo que, de forma consistente y robusta, presente resultados con generalidad. Los problemas que presenta el modelo del que se derivan los datos utilizados son al menos los siguientes:

Bajo el epígrafe *downscaling* (incremento de resolución) se vienen manejando al menos dos operaciones a ejecutar:

Interpolación temporal: Se trata de completar series de datos que aparecen de forma discontinua en el tiempo (característica típica en demografía) y que requieren un tratamiento continuo, para los cuales puede existir, o no, una serie de apoyo cuya correlación con la serie inicial permita su reconstrucción. Este fenómeno se plantea en los siguientes casos: (1) Las fuentes de rentas desagregadas a escala local que, por no ser ni continuas ni sincronizadas, resultan difíciles de aislar para un año concreto; (2) los datos demográficos ligados al censo que se elaboran de forma discontinua; (3) las proyecciones demográficas y económicas de los organismos internacionales (Banco Mundial, Naciones Unidas) se presentan para escenarios discontinuos.

Desagregación espacial: Se trata de deshacer una operación de suma de valores que se han acumulado previamente. Este fenómeno se plantea esencialmente cuando se tienen datos regionales y se quiere obtener subtotales por regiones no explícitamente definidos. Hay dos situaciones claramente diferenciadas: (1) cuando los datos estimados son pasados y es necesario distribuirlos, y (2) cuando se trata de previsiones futuras que se han definido de forma compacta y necesitamos ajustarlo a las condiciones de predicción para entornos más reducidos. Este es el caso en el trabajo desarrollado, como por ejemplo, con los datos de PIB al distribuirlos a las unidades de análisis en cada polígono o unidad de estudio.

La naturaleza del dato a desagregar crea problemas para su elaboración, interpretación y difusión: para su elaboración, porque las variables económicas, pese a estar medidas en unidades homogéneas (en este caso en dólares de los Estados Unidos), pueden tener distintos significados según el contexto socioeconómico en que se desarrollan; para su interpretación, porque cuando se trata de ratios como la renta per cápita se han de cruzar datos de proyecciones de población y de crecimiento económico que pueden presentar anomalías en el corto plazo que requieran análisis detallados; y para su difusión, dado que las condiciones de generalidad que exigen las informaciones agregadas pueden resultar contradictorias con las elaboraciones específicas a micro-escala invalidando la publicación.

En concreto, en este estudio, las variables a manejar son fundamentalmente el Producto Interno Bruto per cápita de los distintos países y se desea obtener estos datos a una escala desagregada para aplicar el concepto de vulnerabilidad a cada tramo de costa o unidad de estudio y obtener D_{nm}^{SE} ; en este estudio se han utilizado datos ya desagregados según el procedimiento explicado en la literatura (Gaffin y otros, 2004; Van Vuuren y otros, 2006). Los principales aspectos de este proceso en cuanto a los datos de población y PIB son:

Población

- —Se distribuye la población a escala nacional manteniendo las cuotas de cada país en un ratio constante dentro del área regional estudiada.
- —Se distribuye la población a escala de malla georreferenciada. Se ha planteado una tasa de crecimiento constante en todos los puntos igual a la observada en el total del país.
- —Dado que el sistema no capta las migraciones internas, cabría plantearse corregir las tasas de crecimiento demográfico en áreas subnacionales y redistribuir la población en el caso de que se cuente con indicadores de respuestas demográficas diversas.

PIB

Se ha elegido en primer lugar el indicador de actividad económica a desagregar. Para ello, se han combinado dos fuentes de información distintas. En primer lugar, la serie de Contabilidad Nacional elaborada por las Naciones Unidas se ha empleado como fuente general y, en segundo lugar, la serie de los Indicadores del desarrollo Mundial del Banco Mundial que cuenta con experiencia específica y sus fuentes estadísticas son de mejor calidad (en general en países pequeños). A partir de esta serie, existen en la literatura dos líneas metodológicas paralelas: (1) la de Sachs y otros (2001), publicada por el CIESIN (2002a), y (2) la de Nakicenovic y otros (2000). Ambas tratan de homogeneizar el PIB entre países, salvando la inconsistencia que representa que una misma magnitud monetaria del agregado Renta o PIB, represente distintas magnitudes reales, según el poder adquisitivo de las sociedades, el nivel de renta, la productividad del país o su riqueza agregada.

CIESIN (2002a) ha tratado de ajustar la paridad de poder adquisitivo. Es decir, se ha centrado en homogeneizar según la renta real de los sujetos y su capacidad de gasto real. De esta forma se elimina el efecto distorsionador de un país de precios de consumo altos (digamos doble que en un caso patrón) que, por definición tendrá un PIB numéricamente doble que el país patrón, que produciendo realmente lo mismo, lo produce a precios distintos.

Otros autores, como Nakicenovic y otros (2000), se han centrado en ajustar la serie al precio relativo de intercambio entre países, introduciendo el efecto combinado de los precios y del tipo de cambio de la moneda. Esta aproximación puede ofrecer distorsiones en el caso de inestabilidad monetaria o de estrategias de devaluación competitiva, si bien se asume que a largo plazo las anomalías se cerrarán a través del comercio y el movimiento de capital y mano de obra.

Estas dos estimaciones proporcionan diferencias más profundas que lo que aquí se expresan, alterando las perspectivas de crecimiento económico. La discusión de fondo es si los países convergen en PIB per cápita hacia los ricos porque la atracción hacia mercados vírgenes y rentables les da ventaja, o si más bien se separan porque las economías de aglomeración provocan una trampa de la pobreza.

A continuación se calcula la tasa de crecimiento que se emplea en el pronóstico, para ello se calcula la tasa de crecimiento compatible con el horizonte de convergencia propuesto. Tras ello, se prorroga el crecimiento de las estadísticas nacionales hacia el futuro. Finalmente se verifica si el pronóstico por países es compatible con el pronóstico por regiones (oficial), repartiéndose las diferencias entre los países según su ritmo de crecimiento.

Como resultado, se cuenta con una serie de PIB per cápita bastante larga que presenta anomalías en los primeros años (según las estimaciones de crecimiento demográfico y económico) que se rechazan. Si se combinan los resultados obtenidos con la distribución espacial de la población, se obtiene una función de densidad de renta (atribuyendo a cada sujeto su renta per cápita).

Para desarrollar el análisis de vulnerabilidad socioeconómica se ha debido enfrentar datos expresados a distinta escala de agregación espacial, lo que ha obligado a optar entre dos alternativas, o seleccionar la escala de mínima desagregación, o establecer un mecanismo de desagregación que permita presentar la información en distintos niveles de agregación. Se optó por este segundo procedimiento para lo cual a su vez se han planteado las siguientes vías:

- i. Reproducir el modelo hacia adentro. Es decir, partir de la distribución estimada de la población (CIESIN, 2001b) y distribuir la renta siguiendo la población existente, que al estar distribuida con más detalle, permite distribuir la renta en el espacio a menor escala de los datos disponibles.
- ii. Distribuir la renta según la densidad de población o tamaño del núcleo y atribuir una renta per cápita distinta a los núcleos rurales y urbanos, a partir de una muestra sociológica representativa.
- iii. Redistribuir la renta según la distribución deiindicadores objetivos de renta.

La escala de este trabajo y la información disponible solo permiten la aplicación del procedimiento expuesto en primer lugar, si bien las otras dos propuestas se reservan para mejoras complementarias futuras.

Por lo tanto, en este trabajo se han utilizado los datos de población distribuidos en una malla GIS de 2,5 grados de tamaño de celda y sobre ella se ha reproducido la metodología de Sachs y otros (2001) para el CIESIN desagregando así espacialmente los datos de PIB per cápita disponibles. Los datos de PIB que se han empleado se han generado combinando dos procedimientos. En primer lugar, y como criterio general, hemos empleado los datos PIB per cápita en dólares internacionales expresados en paridad de poder adquisitivo. Las fuentes disponibles para estos datos son el Banco Mundial y el Fondo Monetario Internacional dentro de las instituciones económicas convencionales y la Central Intelligence Agency (CIA) del gobierno de los Estados Unidos dentro de las fuentes no convencionales.

Se trabajó con los datos del Fondo Monetario Internacional (FMI) completando con las demás fuentes allí donde no existían datos disponibles a través de correlaciones cruzadas entre diversas fuentes de PIB. Estos datos se han empleado como dato de referencia en los países para los que los datos nacionales constituían la fuente disponible más desagregada espacialmente. En los casos en que se dispone de datos a escala subnacional para el PIB (estados de Brasil, México, Argentina, etc.) se ha corregido el dato nacional con un indicador que representa la relación entre el PIB nacional y el estatal, captando así las diferencias territoriales de actividad económica dentro del país. Este proceso de corrección se adaptará eventualmente allí donde existan datos que lo permitan.

a) Limitaciones del modelo adoptado y propuestas de mejora

La propuesta de desagregación elegida depende críticamente de una distribución poblacional a escala GIS correspondiente a la población vigente y a una distribución espacial específica. El modelo no es estable ni frente a migraciones, ni frente a modelos de distribución espacial distintos.

El modelo no asume diferencias en renta per cápita intranacionales, y ese es un aspecto a calibrar cuando se trabaja en sociedades donde la desigualdad es una característica básica. El PIB per cápita ajustado a unidades homogéneas es una magnitud distinta de la que se observó en las cuentas nacionales del país, con lo cual los resultados obtenidos con una métrica u otra pueden reflejar situaciones distintas.

El modelo predictivo hacia el futuro, inherente a las proyecciones de población y renta elaboradas por el CIESIN, está condicionado por las hipótesis de convergencia demográfica y económica entre países y por las hipótesis de evolución demográfica que obviamente han sido validadas en el trabajo, pero que, sobre todo en predicciones a plazos cortos, pueden alterar los resultados de forma significativa.

2.5.2.3 Estimación de la valoración económica de los ecosistemas

Una vez presentadas las metodologías existentes y sus limitaciones, a continuación se resume la aproximación utilizada en este trabajo para obtener la vulnerabilidad socioeconómica.

La valoración de los activos naturales sometidos a riesgos derivados del cambio climático se realiza mediante el indicador D_{nm}^{ECO} (\$ m⁻²año⁻¹). Este indicador se ha obtenido inicialmente del trabajo de Constanza y otros (1997) donde se da un valor a los ecosistemas en función de los servicios que aportan y que ha sido ampliamente aplicado en estudios de valoración de ecosistemas internacionalmente. Sin embargo, se hace notar que estos valores son susceptibles de ser modificados por el gestor.

Para realizar este estudio se ha actualizado a dólares de los Estados Unidos (US\$) para el año 2009, el valor proporcionado por Constanza y otros (1997). Para hacer esto, existen diversos métodos de homogeneización de valores monetarios:

- **Basados en el IPC:** de forma que un dólar represente el mismo poder adquisitivo en términos de la bolsa patrón de consumo de la economía estodounidense definida oficialmente para ese país.
- —**Basado en el deflactor del PIB:** se trata de que un dólar represente la misma cantidad de bienes computando todos los bienes producidos en la economía analizada (no solo los bienes de consumo) y empleando como bolsa de bienes la producción real.
- —Basado en el presupuesto familiar promedio: se trata ahora de que un dólar represente la misma cantidad de los bienes reales consumidos por una unidad familiar, prescindiendo de las singularidades de las cestas de bienes definidas en el IPC.
- —**Basado en el salario mínimo:** en este caso se pretende que un dólar represente las mismas horas de trabajo de un trabajador no cualificado. Es un indicador basado en el esfuerzo para conseguir la renta por los trabajadores.
- —Basado en el salario medio de los trabajadores o grupos específicos: de forma que una cantidad monetaria represente las mismas horas de trabajo de un grupo específico de trabajadores.
- **—Basado en el PIB per cápita:** de forma que una cantidad monetaria represente la misma "riqueza" para todos los momentos de la valoración.
- —**Basado en el PIB:** haciendo que las valoraciones de un dólar representen una cuota fija del PIB del país en cada momento.

De todas estas propuestas, en este estudio, se ha elegido la que representa una aproximación más general que es aquella basada en el indicador del IPC (Índice de Precios al Consumidor). Con esta opción se traducen las distintas valoraciones a un valor equivalente a poder adquisitivo, en términos de bienes de consumo, continuo en el tiempo. Se ha considerado esta propuesta más representativa, dado que se trata de una valoración en la que los miembros de una sociedad comparan unos servicios naturales que les proporcionan bienestar con otra fuente de bienestar que es el consumo. No obstante, se mantiene la posibilidad de aplicar el indicador basado en el deflactor del PIB cuando los activos valorados generen servicios con un sesgo más productivo que el ligado al bienestar directo de los sujetos.

Por lo tanto, se ha definido un coeficiente de valoración que viene dado por la relación entre el poder adquisitivo del dólar en el instante presente y el del momento de la valoración. En el cuadro 2.15

se adjunta el coeficiente utilizado y en el cuadro 2.16 se presenta el valor de D_{nm}^{ECO} para los ecosistemas considerados en ALyC. Así a cada unidad de estudio de la costa se le ha aplicado un valor de D_{nm}^{ECO} en función del ecosistema presente en la misma.

Como se puede detectar en el cuadro 2.16, existen tres ecosistemas: deltas, desierto y zonas permanentemente cubiertas de hielo, que no tienen valoración en el trabajo usado como referencia para la valoración, esto es, Constanza y otros (1997). Sin embargo, como una primera aproximación, se ha asumido para los deltas el mismo valor que el asignado a los estuarios y para valorar las unidades de estudio con desierto o zonas con hielo, a falta de más información, se les dado un valor basado solamente en el servicio "recreación". Para estimar este valor, se ha considerado igual que el dado por Constanza y otros (1997) a ese servicio para otros ecosistemas: a desierto se le ha dado el mismo que al bosque templado/boreal y a zonas con hielo el que tienen lagos y ríos.

CUADRO 2.15 COEFICIENTE DE HOMOGENEIZACIÓN DEL PODER ADQUISITIVO DEL DÓLAR EN 2009 Y EN EL MOMENTO DE LA VALORACIÓN

Datos Inflación Americana		Datos Inflación Americana			
	1\$ del año 19xx vale en 2009			1\$ del año 19xx vale en 2009	
Año	para comprar producción total Deflactor PIB	para comprar bienes de consumo IPC	Año	para comprar producción total Deflactor PIB	para comprar bienes de consumo IPC
1970	5,52	4,51	1990	1,64	1,52
1971	5,3	4,3	1991	1,58	1,47
1972	5,13	4,12	1992	1,53	1,43
1973	4,83	3,9	1993	1,48	1,4
1974	4,35	3,58	1994	1,45	1,37
1975	3,98	3,27	1995	1,41	1,35
1976	3,77	3,09	1996	1,37	1,32
1977	3,54	2,91	1997	1,34	1,3
1978	3,29	2,72	1998	1,32	1,28
1979	2,96	2,51	1999	1,29	1,27
1980	2,6	2,3	2000	1,25	1,24
1981	2,36	2,1	2001	1,21	1,21
1982	2,22	1,98	2002	1,19	1,19
1983	2,15	1,91	2003	1,17	1,17
1984	2,06	1,84	2004	1,14	1,13
1985	1,99	1,78	2005	1,1	1,1
1986	1,96	1,74	2006	1,06	1,06
1987	1,89	1,69	2007	1,03	1.03
1988	1,81	1,64	2008	0,98	0,99
1989	1,73	1,58	2009	1	1

Fuente: Elaboración propia.

CUADRO 2.16
VALOR DEL INDICADOR D_{nm}^{ECO}

		D_{nm}^{ECO} (US\$94 ha $^{-1}$ año $^{-1}$)	D_{nm}^{ECO} (US\$09 m2 ⁻¹ año ⁻¹)
	Estuarios	22 832	3,128
	Marismas	9 990	1,369
	Manglares		1,369
20 0	Deltas	22 832(1)	3,128
)MA	Costa rocosa	4 052	0,555
ISTE	Costa sedimentaria	4 052	0,555
ECOSISTEMAS	Arrecifes de coral	6 075	0,832
至	Bosque	2 007	0,275
	Pastizal/Matorral/ Sabana	232	0,032
	Desierto	36(2)	0,005
	Zonas permanentemente cubiertas de hielo	230(2)	0,032

Fuente: Constanza y otros (1997).

Nota: Actualizado a US\$ del año 2009 (Factor de actualización monetaria=1,37). (1) Se le ha asignado el mismo valor que a los estuarios. (2) Sólo uso recreativo.

Para la valoración de la actividad socioeconómica afectada por los riesgos derivados del cambio climático (D_{nm}^{SE}), se ha utilizado como indicador el valor de la renta generada en la unidad de estudio. Para obtener este dato, se ha utilizado como proxy la distribución espacial de la renta (datos del PIB), totalizando en cada unidad espacial la población afectada CIESIN (2002b) y la renta afectada, como dimensión del valor puesto en riesgo por el cambio climático.

3. Información utilizada para la evaluación de la vulnerabilidad y la exposición

3.1 Línea de costa

Las líneas de costa utilizadas deben ser consistentes para todo el área de trabajo, por ello han sido utilizadas dos bases cartográficas globales: la base de datos del Global Administrative Areas (GADM) y la base de mapas del Enviromental Systems Research Institute (ESRI). El GADM es una base de datos espacial de las áreas y límites administrativos para ser usados en software GIS, los cuales pueden ser descargados en la siguiente dirección web: (http://www.gadm.org/). Los mapas globales ESRI Data Maps son proporcionados por la compañía ESRI junto con sus productos SIG en la página web (http://www.esri.com).

Mientras la línea de costa del GADM proporciona un mayor detalle y, por lo tanto, una escala de trabajo más fina, la cartografía de ESRI ofrece una línea de costa más grosera, idónea para trabajos y análisis que no requieran excesivo detalle de la franja costera –figura 2.26–.

3.2 Modelo Digital del Terreno (STRM 90 m)

El uso de un modelo digital del terreno que cubra el área de estudio de forma continua y uniforme es uno de los aspectos clave del estudio de riesgo. Por esta razón ha sido utilizado el modelo digital del terreno STRM v4. El STRMS 90m se puede descargar desde la siguiente dirección web: http://srtm.csi.cgiar.org/ –figura 2.27–.

El modelo digital de elevaciones de 90 metros proviene de la misión Shuttle Radar Topography Mission (SRTM), un proyecto de cooperación entre la National Aeronautics and Space Administration (NASA), la National Geospatial-Intelligence Agency of the United States (NGA) llevado a cabo entre el 11 y el 20 de febrero de 2000 a bordo del transbordador espacial "Endeavour" que recogió datos topográficos entre los 60°N y los 58°S, cubriendo aproximadamente el 80% del planeta. Los modelos

digitales de terreno, de 90 metros de resolución espacial, obtenidos a partir de este sensor, con tecnología radar de doble frecuencia, se denominan SRTM y se construyen mediante procesos de interferometría.

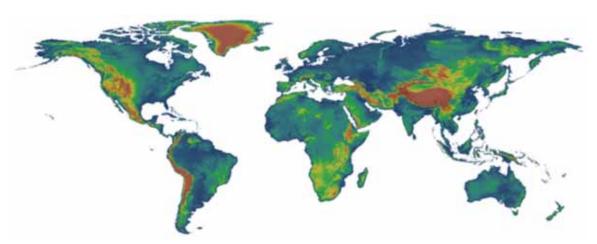

Los datos son proyectados geográficamente, con datos de elevación en metros, están referenciados al geoide WGS84 EGM96 y son georreferenciados en el plano horizontal al elipsoide WGS84.

FIGURA 2.26 LÍNEA DE COSTA DE AMÉRICA LATINA Y EL CARIBE DE DETALLE UTILIZADA EN EL ESTUDIO

Fuente: Environmental Systems Research Institute (ESRI). (http://www.esri.com).

FIGURA 2.27 MODELO DIGITAL DEL TERRENO STRM. RESOLUCIÓN DE 90 M

 $\textbf{Fuente:} \ Consortium \ for \ Spatial \ Information \ (CGIAR-CSI) \ (http://srtm.csi.cgiar.org/).$

3.3 Bases de datos de batimetrías

Para definir la topografía sumergida de la costa de ALyC se ha recurrido a dos fuentes de datos de batimetrías globales de contrastada calidad y aplicación. Estos datos, también utilizados para la definición de las dinámicas e impactos que se presentan en el documento 1 y 3 del proyecto, han sido obtenidos de organismos o centros de investigación internacionales que aportan la información de manera libre y gratuita. Sin embargo, a lo largo del trabajo, se ha evidenciado la carencia de información sobre dinámicas como la marea meteorológica o el oleaje en ALyC. Por ello, ha sido necesario generar bases de datos propias para cubrir estas carencias. La base para esta modelización numérica es disponer de una batimetría global. Como datos de batimetría se han utilizado dos fuentes: GEBCO y ETOPO.

La base de datos GEBCO (General Batymetric Chart of the Oceans) proporciona datos de batimetría global (figura 2.28) en una malla espacial de resolución de 1 minuto. Recientemente, desde enero de 2009, se han publicado los datos con resolución de 30 segundos (GEBCO_08 Grid). Los datos han sido mejorados con la combinación de datos de mediciones de barcos junto con los datos medidos desde satélite. Este producto es actualizado periódicamente.

Los datos están disponibles en el British Oceanographic Data Centre (BODC) o en la página (http://www.gebco.net/).

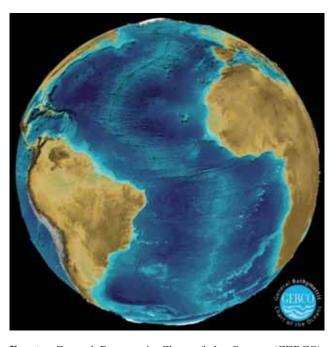


FIGURA 2.28 IMAGEN DE LA BATIMETRÍA GEBCO

Fuente: General Batymetric Chart of the Oceans (GEBCO), (www.gebco.net).

La segunda base de datos de batimetría ha sido la ETOPO1 (Earth Topography Digital Dataset.) –figura 2.29–. ETOPO1 es un modelo global de la superficie terrestre de resolución de 1 minuto que integra topografía terrestre y batimetría de los océanos. Los datos pertenecen al National Geophysical Data Center (NGDC) del NOAA y fue construida de diversas fuentes globales y regionales. Existen versiones antiguas de estos datos (ETOPO2v2 y ETOPO5). La información más reciente está disponible en una versión "Ice

Surface" (Superficie del hielo Ártico y del Antártico) o como "Bedrock" (base de los casquetes de hielo). Los datos han sido obtenidos de esta dirección (http://www.ngdc.noaa.gov/mgg/global/global.html).

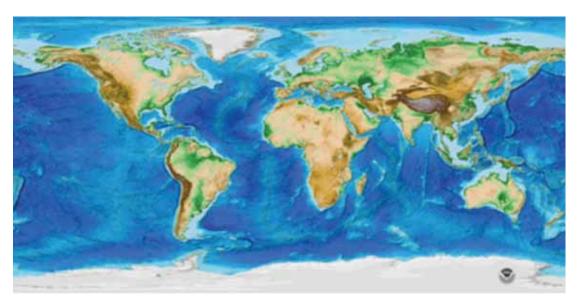


FIGURA 2.29
IMAGEN DE LA TOPOGRAFÍA Y BATIMETRÍA DE ETOPO

Fuente: National Oceanic and Atmospheric Administration (NOAA)-National Geophysical Data Center (NGDC) (http://www.ngdc.noaa.gov/mgg/global/global.html).

Ambas fuentes de datos incurren en errores en ciertos lugares del mundo por lo que resulta adecuada la combinación de ambas para evitar errores. La base de datos de batimetría GEBCO es una de las mejores y más contrastadas bases de datos con resolución homogénea en todo el Globo. Sin embargo, en el análisis de las batimetrías se observó que aparecían errores en la batimetría de la costa sudamericana del Pacífico en las cercanías de la costa, en calados por debajo de los 40-30 m. No obstante, los resultados presentados en este estudio tanto en la caracterización de las dinámicas en la región, generados en el marco de este proyecto, como en el estudio de impactos y riesgos, son representativas de condiciones *offshore* y, por tanto, no afectadas por estos errores (en el análisis de riesgos e impactos el oleaje ha sido trasladado a costa mediante modelos paramétricos donde no se han incluido estos errores).

3.4 Usos del suelo (Land Cover, GLCNMO)

El conocimiento espacial de los usos del suelo es fundamental en análisis de riesgos o vulnerabilidad. En este sentido la teledetección satelital proporciona información uniforme a través de sensores específicos para identificar fenómenos como el tipo de superficie.

Así, el GLCNMO (Global Land Cover by National Mapping Organizations) fue creado mediante el uso de observaciones del MODIS (Moderate Resolution Imaging Spectroradiometer) tomadas durante 16 días en el año 2003. La composición de dichas imágenes fue realizada con el fin de obtener una clasificación del suelo de 20 clases según LCCS (Land Cover Classification System) desarrolladas por la FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación), véase cuadro 2.17.

CUADRO 2.17 CLASIFICACIÓN DEL GLCNMO

Código		Clases
1	Broadleaf Evergreen Forest	Bosque perennifolio
2	Broadleaf Deciduous Forest	Bosque caducifolio
3	Needleleaf Evergreen Forest	Bosque perennifolio de coníferas
4	Needleleaf Deciduous Forest	Bosque caducifolio de coníferas
5	Mixed Forest	Bosque mixto
6	Tree Open	Claro de bosque
7	Shrub	Matorral
8	Herbaceous	Herbáceas
9	Herbaceous with Sparse Tree/Shrub	Herbáceas con árboles/arbustos ralos
10	Sparse vegetation	Vegetación rala
11	Cropland	Cultivo
12	Paddy field	Arrozal
13	Cropland/Other Vegetation Mosaic	Cultivo/Otros Mosaicos de vegetación
14	Mangrove	Manglar
15	Wetland	Humedal
16	Bare area, consolidated (gravel,rock)	Área desnuda, consolidada (grava, roca)
17	Bare area, unconsolidated (sand)	Área desnuda, no consolidada (arena)
18	Urban	Urbano
19	Snow/Ice	Nieve/Hielo
20	Water bodies	Masas de agua
255	No data	Sin datos

Fuente: Global Land Cover by National Mapping Organizations (GLCNMO).

Los productos del Global Land Cover 2000 presentan una resolución espacial de 1 km y pueden ser descargados desde la siguiente página web (http://bioval.jrc.ec.europa.eu/products/glc2000/products.php).

FIGURA 2.30
EJEMPLO DE DATOS DE USOS DEL SUELO DEL LAND COVER.
RESOLUCIÓN DE 1 KM

Cuadro de colores para los datos TIFF			
Código	Color (rojo, verde, azul)	Clasificación	
1	(0,50,0)	Bosque perennifolio	
2	(60,150,0)	Bosque caducifolio	
3	(0,110,0)	Bosque perennifolio de coníferas	
4	(85,110,25)	Bosque caducifolio de coníferas	
5	(0,200,0)	Bosque mixto	
6	(140,190,140)	Claro de bosque	
7	(70,120,100)	Matorral	
8	(180,230,100)	Herbáceas	
9	(155,200,50)	Herbáceas con árboles/arbustos ralos	
10	(235,255,100)	Vegetación rala	
11	(240,100,50)	Cultivo	
12	(145,50,230)	Arrozal	
13	(230,100,230)	Cultivos/Otros mosaicos de vegetación	
14	(115,130,230)	Manglar	
15	(180,254,240)	Humedal	
16	(100,100,100)	Área desnuda consolidada (grava, roca)	
17	(200,200,200)	Área desnuda no consolidada (arena)	
18	(255,0,0)	Urbano	
19	(255,255,255)	Nieve/hielo	
20	(90,220,220)	Masas de agua	

Fuente: LandCover.

3.5 Tipos de suelo (GlobCover)

El producto del GlobCover fue creado a través de un proyecto de la Agencia Espacial Europea que comenzó en 2004 y confecciona un mapa de la Tierra a base de las imágenes capturadas entre 2005 y 2006 por el sensor MERIS a bordo del satélite ENVISAT. La figura 2.31 ofrece una visión de los tipos de suelo del GlobCover en el área de estudio.

El GlobCover ofrece una resolución espacial de 250 m por lo que es considerado uno de los mapas globales más detallados en la clasificación de suelos. Esta información espacial puede ser descargada desde (http://ionial.esrin.esa.int/).

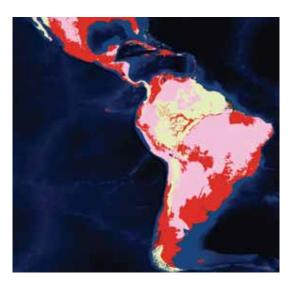
FIGURA 2.31
TIPOS DE SUELO DEL GLOBCOVER DE LA ZONA DE ESTUDIO.
RESOLUCIÓN DE 250 M

Fuente: Elaboración propia a partir de GlobCover.

3.6 Áreas protegidas

El grado de protección de los ecosistemas de la costa de ALyC se ha obtenido de las páginas: World Database on Protected Áreas (http://www.wdpa.org/) y United Nations Environment Programme-World Conservation Monitoring Centre (http://www.unep-wcmc.org/protected_areas/protected_areas.htm).

FIGURA 2.32 DISTRIBUCIÓN DE LAS ÁREAS PROTEGIDAS

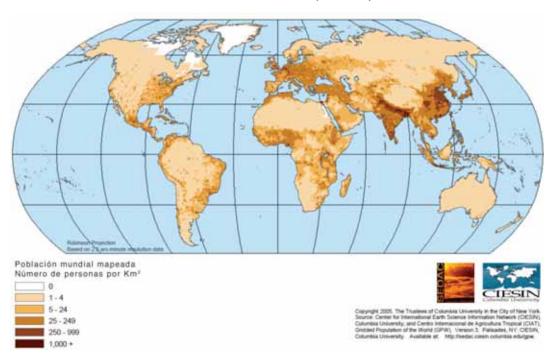


Fuente: World Wildlife Fund (WWF).

3.7 Grado de amenaza de los ecosistemas

El grado de amenaza atribuido a cada ecosistema, y tramo costa, se ha obtenido de la Terrestrial Ecoregions Base Global Dataset que, a su vez, adopta la escala de amenaza desarrollada por la UICN (Unión Mundial para la Naturaleza) para establecer las categorías y criterios de la lista roja de especies (UICN, 2001) disponible en (http://www.worldwildlife.org/science/data/item1872.html).

FIGURA 2.33
GRADO DE AMENAZA DE LOS ECOSISTEMAS



Fuente: World Wildlife Fund (WWF). Nota: Estado crítico en rojo, vulnerable en rosa y estable en amarillo.

3.8 Densidad de población

La densidad de población utilizada pertenece al Center for International Earth Science Information Network (CIESIN), concretamente del proyecto "Gridded Population of the World and the Global Rural-Urban Mapping Project (GRUMP)". Este proyecto ofrece un mapa de población de 1km de resolución espacial para el año 2000 (véase figura 2.34).

FIGURA 2.34
GRIDDED POPULATION OF THE WORLD AND THE GLOBAL RURAL-URBAN
MAPPING PROJECT (GRUMP)

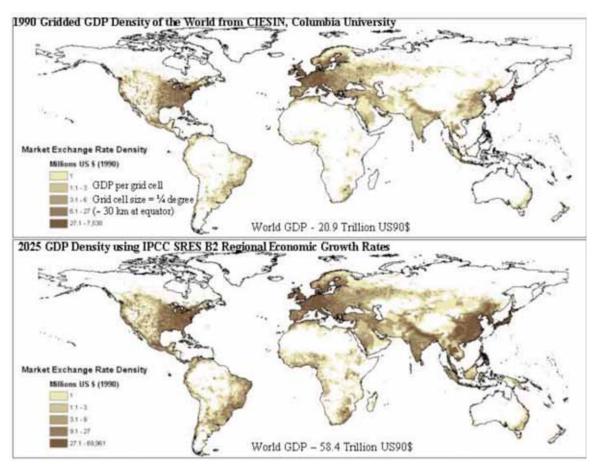
Fuente: CIESIN (Center for International Earth Science Information Network).

La información se puede descargar del "Socioeconomic data and application center" a través de su página web (http://sedac.ciesin.columbia.edu/gpw/global.jsp).

CUADRO 2.18
POBLACIÓN TOTAL PARA CADA PAÍS EN EL AÑO 2000 CALCULADA
A PARTIR DE LOS DATOS DE DENSIDAD DE POBLACIÓN

País	Código ISO	nº habs. País	País	Código ISO	nº habs. País
ATG	28	58 233	HND	340	6 361 560
ARG	32	36 960 524	JAM	388	2 523 460
BHS	44	232 733	MTQ	474	359 707
BRB	52	250 741	MEX	484	98 338 440
BRA	76	166 894 270	MSR	500	3 480
BLZ	84	221 991	ANT	530	165 014
VGB	92	15 498	ABW	533	89 420
CYM	136	32 889	NIC	558	5 035 530
CHL	152	14 848 346	PAN	591	2 820 123
COL	170	41 802 613	PER	604	24 973 177
CRI	188	3 996 910	PRI	630	3 780 040
CUB	192	10 977 350	KNA	659	36 158
DMA	212	64 668	AIA	660	59 984
DOM	214	8 256 853	LCA	662	142 586
ECU	218	12 547 700	VCT	670	81 909
SLV	222	6 231 300	SUR	740	389 001
GUF	254	150 247	TTO	780	1 190 680
GRD	308	89 550	TCA	796	9 630
GLP	312	365 707	VIR	850	101 564
GTM	320	11 316 210	URY	858	3 320 360
GUY	328	738 892	VEN	862	23 855 260
HTI	332	7 889 905			

Fuente: CIESIN (Center for International Earth Science Information Network).


3.9 Producto Interno Bruto (PIB)

Los datos de producto interno bruto actual, basado en la capacidad de poder adquisitivo, han sido obtenidos para cada país a partir de las bases del Fondo Monetario Internacional y de la CIA a través del "The World Factbook".

Para el estudio de proyecciones tanto de población como de PIB se ha consultado los datos del Center for International Earth Science Information Network (CIESIN) de 2002 que se pueden examinar en: http://sedac.ciesin.columbia.edu/mva/downscaling/ciesin.html. Estos resultados están desagregados en una malla 30 km para el PIB (medido en unidades de paridad de poder adquisitivo de cara a su comparabilidad interpaíses) y para la población. Dichos resultados incluyen asimismo proyecciones cada 10 años hasta el año 2100 basados en el Special Report on Emissions Scenarios (SRES) del Intergovernmental Panel of Climate Change (IPCC) escenarios A1, A2, B1, y B2 (véase figura 2.35).

Vulnerabilidad y exposición

FIGURA 2.35
PRODUCTO INTERNO BRUTO 1990 Y PRODUCTO INTERNO BRUTO
PARA EL ESCENARIO B2 EN EL AÑO 2025

Fuente: CIESIN (Center for International Earth Science Information Network).

3.10 Renta per cápita por países

Para la evaluación del índice de vulnerabilidad DSE es necesario contar con información desagregada espacialmente. En este estudio esta desagregación se ha realizado al nivel de los países costeros de ALyC. En el cuadro 2.19 se muestra la renta per cápita (\$/año) para cada país con datos obtenidos del Fondo Monetario Internacional y del "World Factbook" de la Central Intelligence Agency (CIA).

CUADRO 2.19 RENTA MEDIA POR PAÍS EN AMÉRICA LATINA Y EL CARIBE

País	CÓDIG	O ISO	PIB en 2008 (dólares internacionales)
Antigua y Barbuda	ATG	28	19 153,18
Argentina	ARG	32	14 408,32
Bahamas	BHS	44	27 737,29
Barbados	BRB	52	18 977,48
Brasil	BRA	76	10 512,30
Belize	BLZ	84	7 954,68
Islas Vírgenes-Británicas	VGB	92	16 000,00
Islas Caimán	CYM	136	43 800,00
Chile	CHL	152	14 591,81
Colombia	COL	170	8 928,05
Costa Rica	CRI	188	10 771,77
Cuba	CUB	192	9 700,00
Dominica	DMA	212	10 088,17
República Dominicana	DOM	214	8 618,83
El Ecuador	ECU	218	7 868,97
El Salvador	SLV	222	7 598,84
Guyana Francesa	GUF	254	6 000,00
Grenada	GRD	308	11 464,15
Guadalupe	GLP	312	7 900,00
Guatemala	GTM	320	4 873,79
Guyana	GUY	328	6 417,77
Haití	HTI	332	1 309,13
Honduras	HND	340	4 269,37
Jamaica	JAM	388	8 967,54
Martinica	MTQ	474	14 400,00
México	MEX	484	14 527,70
Montserrat	MSR	500	3 400,00
Antillas Neerlandesas	ANT	530	16 000,00
Aruba	ABW	533	21 800,00
Nicaragua	NIC	558	2 693,58
Panamá	PAN	591	11 582,00
Perú	PER	604	8 595,31
Puerto Rico	PRI	630	17 100,00

País	CÓDIO	GO ISO	PIB en 2008 (dólares internacionales)
Saint Kitts y Nevis	KNA	659	14 319,88
Anguila	AIA	660	12 200,00
Santa Lucía	LCA	662	10 709,88
San Vicente y las Granadinas	VCT	670	10 120,61
Suriname	SUR	740	8 428,88
Trinidad y Tabago	TTO	780	20 338,05
Islas Turcas y Caicos	TCA	796	11 500,00
Islas Vírgenes de los Estados Unidos	VIR	850	14 500,00
Uruguay	URY	858	12 688,48
Venezuela (República Boliviarana de)	VEN	862	12 717,04

Fuentes: Fondo Monetario Internacional (www.imf.org) y Central Intelligence Agency "World Fact Book" disponible en (https://www.cia.gov/library/publications/the-world-factbook/index.html).

3.11 CEPALSTAT

La página web (http://www.eclac.org/estadisticas/) recoge estadísticas nacionales de las fuentes oficiales de los distintos países. En concreto, se han manejado los cuadros macroeconómicos y la distribución funcional de la Renta, así como indicadores físicos de población, tierras cultivadas y explotaciones madereras.

3.12 CEPAL

Se han consultado diversos informes y fuentes de información elaborados por la CEPAL de la que se extraído variada información. En concreto, para centrar el análisis de riesgo en las infraestructuras portuarias, la Unidad de Servicios de Infraestructura (División de Recursos Naturales e Infraestructura) de la CEPAL ha proporcionado al estudio los rankings de los primeros 100 puertos según mercancías en TEUs y toneladas –cuadro 2.20 y cuadro 2.21–.

CUADRO 2.20 CLASIFICACIÓN DE LOS 100 PUERTOS CON MÁS ACTIVIDAD EN 2010 EN TEUS

1 Colón (MIT, Evergreen, Panamá Panamá 2 222736 2 468 520 2 210 720 2 810 657 2 Balboa Panamá 1 833 778 2 167 977 2 011 778 2 758 506 3 Santos Brasil 2 532 900 2 677 839 2 255 862 2 715 568 4 Kingston Jamaica 2 016 792 1 915 951 1 728 042 1 891 770 5 Buenos Aires (incluye Exolgan) Argentina 1 709 000 1 781 100 1 412 462 1 891 770 5 Buenos Aires (incluye Exolgan) Argentina 1 709 000 1 781 100 1 412 462 1 730 831 6 Cartagena (inc. S.P.R. El Bosque, Contecar, ZP) Colombia 975 391 1 064 105 1 237 873 1 581 401 7 Manzanillo México 1 409 614 1 409 782 1 110 356 1 509 378 8 Callao Perú 1 022 246 1 203 315 1 088 83 1 340 186 9 Guayaquil Ecuador 809 730 874 955 884 100 1 093 349	Ranking 2010	- Puerto	País	TEU 2007	TEU 2008	TEU 2009	TEU 2010
3 Santos Brasil 2 532 900 2 677 839 2 255 862 2 715 80 4 Kingston Jamaica 2 016 792 1 915 951 1 728 042 1 891 70 5 Buenos Aires (incluye Exolgan) Argentina 1 709 000 1 781 100 1 412 462 1 730 831 6 Cartagena (inc. S.P.R., El Bosque, Contecar, ZP) Colombia 975 391 1 064 105 1 237 873 1 581 401 7 Manzanillo México 1 409 614 1 409 782 1 110 356 1 509 378 8 Callao Perú 1 022 246 1 203 315 1 089 838 1 346 186 9 Guayaquil Ecuador 809 730 874 955 884 100 10 903 349 10 Freeport Bahamas 1 632 000 1 702 000 1 297 000 1 081 00 11 Caucedo República Dominicana 574 441 736 879 906 279 1 004 901 12 Itajái (inc.Navegantes) Brasil 681 852 693 580 593 359 957 130	1		Panamá	2 222 736	2 468 520	2 210 720	2 810 657
4 Kingston Jamaica 2 016 792 1 915 951 1 728 042 1 891 70 5 Buenos Aires (incluye Exolgan) Argentina 1 709 000 1 781 100 1 412 462 1 730 831 6 Cartagena (inc. S.P.R, El Bosque, Contecar, ZP) Colombia 975 391 1 064 105 1 237 873 1 581 401 7 Manzanillo México 1 409 614 1 409 782 1 110 356 1 509 378 8 Callao Perú 1 022 246 1 203 315 1 089 838 1 361 168 9 Guayaquil Ecuador 809 730 874 955 884 100 1 093 349 10 Freeport Bahamas 1 632 000 1 702 000 1 297 000 1 093 349 10 Freeport Bahamas 1 632 000 1 702 000 1 297 000 1 081 000 11 Caucedo República Dominicana 574 441 7 36879 906 279 1 004 901 12 Itajai (inc.Navegantes) Brasil 681 852 693 580 593 359 957 130 <t< th=""><th>2</th><th>Balboa</th><th>Panamá</th><th>1 833 778</th><th>2 167 977</th><th>2 011 778</th><th>2 758 506</th></t<>	2	Balboa	Panamá	1 833 778	2 167 977	2 011 778	2 758 506
5 Buenos Aires (incluye Exolgan) Argentina 1 709 000 1 781 100 1 412 462 1 730 831 6 Cartagena (inc. S.P.R, El Bosque, Contecar, Z.P) Colombia 975 391 1 064 105 1 237 873 1 581 401 7 Manzanillo México 1 409 614 1 409 782 1 110 356 1 509 378 8 Callao Perú 1 022 246 1 203 315 1 089 838 1 346 186 9 Guayaquil Ecuador 809 730 874 955 884 100 1 093 349 10 Freeport Bahamas 1 632 000 1 702 000 1 297 000 1 081 000 11 Caucedo República Dominicana 574 441 736 879 906 279 1 004 901 12 Itajai (inc.Navegantes) Brasil 681 852 693 580 593 359 957 130 13 Valparaiso Chile 650 697 687 864 729 033 870 719 14 San Antonio Chile 650 697 687 864 729 033 870 719 <	3	Santos	Brasil	2 532 900	2 677 839	2 255 862	2 715 568
6 Cartagena (inc. S.P.R, El Bosque, Contecar, ZP) Colombia 975 391 1 064 105 1 237 873 1 581 401 7 Manzanillo México 1 409 614 1 409 782 1 110 356 1 509 788 8 Callao Perú 1 022 246 1 203 315 1 089 838 1 346 186 9 Guayaquil Ecuador 809 730 874 955 884 100 1 093 349 10 Freeport Bahamas 1 632 000 1 702 000 1 297 000 1 081 000 11 Caucedo República Dominicana 574 441 736 879 906 279 1 004 901 12 Itajai (inc.Navegantes) Brasil 681 852 693 580 593 359 957 130 13 Valparaiso Chile 681 852 693 580 593 359 957 130 14 San Antonio Chile 650 697 687 864 729 033 870 719 15 Limón-Moin Costa Rica 842 903 835 143 748 029 888 176 16 Laza	4	Kingston	Jamaica	2 016 792	1 915 951	1 728 042	1 891 770
El Bosque, Contecar, ZP)	5	Buenos Aires (incluye Exolgan)	Argentina	1 709 000	1 781 100	1 412 462	1 730 831
8 Callao Perú 1 022 246 1 203 315 1 089 838 1 346 186 9 Guayaquil Ecuador 809 730 874 955 884 100 1 093 349 10 Freeport Bahamas 1 632 000 1 702 000 1 297 000 1 081 000 11 Caucedo República Dominicana 574 441 736 879 906 279 1 004 901 12 Itajai (inc.Navegantes) Brasil 681 852 693 580 593 359 957 130 13 Valparaiso Chile 843 957 946 921 677 432 878 787 14 San Antonio Chile 650 697 687 864 729 033 870 719 15 Limón-Moin Costa Rica 842 903 835 143 748 029 858 176 16 Lazaro Cárdenas México 270 240 524 791 591 467 796 011 17 Puerto Cabello Venezuela (República Bolivariana de) 831 732 809 454 790 000 18 Veracruz	6		Colombia	975 391	1 064 105	1 237 873	1 581 401
9 Guayaquil Ecuador 809 730 874 955 884 100 1 093 349 10 Freeport Bahamas 1 632 000 1 702 000 1 297 000 1 081 000 11 Caucedo República Dominicana 574 441 736 879 906 279 1 004 901 12 Itajai (inc.Navegantes) Brasil 681 852 693 580 593 359 957 130 13 Valparaiso Chile 843 957 946 921 677 432 878 787 14 San Antonio Chile 650 697 687 864 729 033 870 719 15 Limón-Moin Costa Rica 842 903 835 143 748 029 858 176 16 Lazaro Cárdenas México 270 240 524 791 591 467 796 011 17 Puerto Cabello Venezuela (República Bolivariana de) 831 732 809 454 790 000 18 Veracruz México 729 717 7 16 046 564 315 677 596 19 Montevideo	7	Manzanillo	México	1 409 614	1 409 782	1 110 356	1 509 378
Freeport Bahamas 1 632 000 1 702 000 1 297 000 1 081 000	8	Callao	Perú	1 022 246	1 203 315	1 089 838	1 346 186
11 Caucedo República Dominicana 574 441 736 879 906 279 1 004 901 12 Itajai (inc.Navegantes) Brasil 681 852 693 580 593 359 957 130 13 Valparaiso Chile 843 957 946 921 677 432 878 787 14 San Antonio Chile 650 697 687 864 729 033 870 719 15 Limón-Moin Costa Rica 842 903 835 143 748 029 858 176 16 Lazaro Cárdenas México 270 240 524 791 591 467 796 011 17 Puerto Cabello Venezuela (República Bolivariana de) 831 732 809 454 790 000 18 Veracruz México 729 717 716 046 564 315 677 596 19 Montevideo Uruguay 596 487 675 273 588 410 671 952 20 Buenaventura (inc. SPR y ZP) Colombia 723 796 743 295 647 323 662 821 21 Rio Grande	9	Guayaquil	Ecuador	809 730	874 955	884 100	1 093 349
12 Itajai (inc.Navegantes) Brasil 681 852 693 580 593 359 957 130 13 Valparaiso Chile 843 957 946 921 677 432 878 787 14 San Antonio Chile 650 697 687 864 729 033 870 719 15 Limón-Moin Costa Rica 842 903 835 143 748 029 858 176 16 Lazaro Cárdenas México 270 240 524 791 591 467 796 011 17 Puerto Cabello Venezuela (República Bolivariana de) 831 732 809 454 790 000 18 Veracruz México 729 717 716 046 564 315 677 596 19 Montevideo Uruguay 596 487 675 273 588 410 671 952 20 Buenaventura (inc. SPR y ZP) Colombia 723 796 743 295 647 323 662 821 21 Rio Grande Brasil 607 275 601 580 629 586 647 188 22 Paranaguá	10	Freeport	Bahamas	1 632 000	1 702 000	1 297 000	1 081 000
13 Valparaiso Chile 843 957 946 921 677 432 878 787 14 San Antonio Chile 650 697 687 864 729 033 870 719 15 Limón-Moin Costa Rica 842 903 835 143 748 029 858 176 16 Lazaro Cárdenas México 270 240 524 791 591 467 796 011 17 Puerto Cabello Venezuela (República Bolivariana de) 831 732 809 454 790 000 18 Veracruz México 729 717 716 046 564 315 677 596 19 Montevideo Uruguay 596 487 675 273 588 410 671 952 20 Buenaventura (inc. SPR y ZP) Colombia 723 796 743 295 647 323 662 821 21 Rio Grande Brasil 607 275 601 580 629 586 647 188 22 Paranaguá Brasil 595 261 595 729 630 597 546 564 23 Puerto Cortes Hondur	11	Caucedo	República Dominicana	574 441	736 879	906 279	1 004 901
14 San Antonio Chile 650 697 687 864 729 033 870 719 15 Limón-Moin Costa Rica 842 903 835 143 748 029 888 176 16 Lazaro Cárdenas México 270 240 524 791 591 467 796 011 17 Puerto Cabello Venezuela (República Bolivariana de) 831 732 809 454 790 000 18 Veracruz México 729 717 716 046 564 315 677 596 19 Montevideo Uruguay 596 487 675 273 588 410 671 952 20 Buenaventura (inc. SPR y ZP) Colombia 723 796 743 295 647 323 662 821 21 Rio Grande Brasil 607 275 601 580 629 586 647 188 22 Paranaguá Brasil 595 261 595 729 630 597 546 564 23 Puerto Cortes Honduras 553 139 572 382 484 148 538 853 24 Altamira Méxic	12	Itajai (inc.Navegantes)	Brasil	681 852	693 580	593 359	957 130
15 Limón-Moin Costa Rica 842 903 835 143 748 029 858 176 16 Lazaro Cárdenas México 270 240 524 791 591 467 796 011 17 Puerto Cabello Venezuela (República Bolivariana de) 831 732 809 454 790 000 18 Veracruz México 729 717 716 046 564 315 677 596 19 Montevideo Uruguay 596 487 675 273 588 410 671 952 20 Buenaventura (inc. SPR y ZP) Colombia 723 796 743 295 647 323 662 821 21 Rio Grande Brasil 607 275 601 580 629 586 647 188 22 Paranaguá Brasil 595 261 595 729 630 597 546 564 23 Puerto Cortes Honduras 553 139 572 382 484 148 538 853 24 Altamira México 407 657 436 234 400 968 488 013 25 Manaus Brasil <th>13</th> <th>Valparaiso</th> <th>Chile</th> <th>843 957</th> <th>946 921</th> <th>677 432</th> <th>878 787</th>	13	Valparaiso	Chile	843 957	946 921	677 432	878 787
16 Lazaro Cárdenas México 270 240 524 791 591 467 796 011 17 Puerto Cabello Venezuela (República Bolivariana de) 831 732 809 454 790 000 18 Veracruz México 729 717 716 046 564 315 677 596 19 Montevideo Uruguay 596 487 675 273 588 410 671 952 20 Buenaventura (inc. SPR y ZP) Colombia 723 796 743 295 647 323 662 821 21 Rio Grande Brasil 607 275 601 580 629 586 647 188 22 Paranaguá Brasil 595 261 595 729 630 597 546 564 23 Puerto Cortes Honduras 553 139 572 382 484 148 538 853 24 Altamira México 407 657 436 234 400 968 488 013 25 Manaus Brasil 12 095 349 100 309 700 412 500 26 Port of Spain Trinidad y	14	San Antonio	Chile	650 697	687 864	729 033	870 719
17 Puerto Cabello Venezuela (República Bolivariana de) 831 732 809 454 790 000 18 Veracruz México 729 717 716 046 564 315 677 596 19 Montevideo Uruguay 596 487 675 273 588 410 671 952 20 Buenaventura (inc. SPR y ZP) Colombia 723 796 743 295 647 323 662 821 21 Rio Grande Brasil 607 275 601 580 629 586 647 188 22 Paranaguá Brasil 595 261 595 729 630 597 546 564 23 Puerto Cortes Honduras 553 139 572 382 484 148 538 853 24 Altamira México 407 657 436 234 400 968 488 013 25 Manaus Brasil 12 095 349 100 309 700 412 500 26 Port of Spain Trinidad y Tabago 357 486 385 000 401 206 27 Santo Tomas de Castilla	15	Limón-Moin	Costa Rica	842 903	835 143	748 029	858 176
Bolivariana de) 18	16	Lazaro Cárdenas	México	270 240	524 791	591 467	796 011
19 Montevideo Uruguay 596 487 675 273 588 410 671 952 20 Buenaventura (inc. SPR y ZP) Colombia 723 796 743 295 647 323 662 821 21 Rio Grande Brasil 607 275 601 580 629 586 647 188 22 Paranaguá Brasil 595 261 595 729 630 597 546 564 23 Puerto Cortes Honduras 553 139 572 382 484 148 538 853 24 Altamira México 407 657 436 234 400 968 488 013 25 Manaus Brasil 12 095 349 100 309 700 412 500 26 Port of Spain Trinidad y Tabago 357 486 385 000 401 206 27 Santo Tomas de Castilla Guatemala 307 727 322 519 329 946 392 768 28 San Vicente (SVTI) Chile 481 672 604 560 494 275 363 557 29 La Guaira Venezuela (Repú	17	Puerto Cabello	· •	831 732	809 454	790 000	
20 Buenaventura (inc. SPR y ZP) Colombia 723 796 743 295 647 323 662 821 21 Rio Grande Brasil 607 275 601 580 629 586 647 188 22 Paranaguá Brasil 595 261 595 729 630 597 546 564 23 Puerto Cortes Honduras 553 139 572 382 484 148 538 853 24 Altamira México 407 657 436 234 400 968 488 013 25 Manaus Brasil 12 095 349 100 309 700 412 500 26 Port of Spain Trinidad y Tabago 357 486 385 000 401 206 27 Santo Tomas de Castilla Guatemala 307 727 322 519 329 946 392 768 28 San Vicente (SVTI) Chile 481 672 604 560 494 275 363 557 29 La Guaira Venezuela (República Bolivariana de) 421 545 436 911 378 318 333 539 30 Puerto Barrios	18	Veracruz	México	729 717	716 046	564 315	677 596
21 Rio Grande Brasil 607 275 601 580 629 586 647 188 22 Paranaguá Brasil 595 261 595 729 630 597 546 564 23 Puerto Cortes Honduras 553 139 572 382 484 148 538 853 24 Altamira México 407 657 436 234 400 968 488 013 25 Manaus Brasil 12 095 349 100 309 700 412 500 26 Port of Spain Trinidad y Tabago 357 486 385 000 401 206 27 Santo Tomas de Castilla Guatemala 307 727 322 519 329 946 392 768 28 San Vicente (SVTI) Chile 481 672 604 560 494 275 363 557 29 La Guaira Venezuela (República Bolivariana de) 421 545 436 911 378 318 333 539 30 Puerto Barrios Guatemala 224 817 248 797 317 646 326 833 31 Suape Brasil 237 077 293 133 242 765 324 191	19	Montevideo	Uruguay	596 487	675 273	588 410	671 952
22 Paranaguá Brasil 595 261 595 729 630 597 546 564 23 Puerto Cortes Honduras 553 139 572 382 484 148 538 853 24 Altamira México 407 657 436 234 400 968 488 013 25 Manaus Brasil 12 095 349 100 309 700 412 500 26 Port of Spain Trinidad y Tabago 357 486 385 000 401 206 27 Santo Tomas de Castilla Guatemala 307 727 322 519 329 946 392 768 28 San Vicente (SVTI) Chile 481 672 604 560 494 275 363 557 29 La Guaira Venezuela (República Bolivariana de) 421 545 436 911 378 318 333 539 30 Puerto Barrios Guatemala 224 817 248 797 317 646 326 833 31 Suape Brasil 237 077 293 133 242 765 324 191	20	Buenaventura (inc. SPR y ZP)	Colombia	723 796	743 295	647 323	662 821
23 Puerto Cortes Honduras 553 139 572 382 484 148 538 853 24 Altamira México 407 657 436 234 400 968 488 013 25 Manaus Brasil 12 095 349 100 309 700 412 500 26 Port of Spain Trinidad y Tabago 357 486 385 000 401 206 27 Santo Tomas de Castilla Guatemala 307 727 322 519 329 946 392 768 28 San Vicente (SVTI) Chile 481 672 604 560 494 275 363 557 29 La Guaira Venezuela (República Bolivariana de) 421 545 436 911 378 318 333 539 30 Puerto Barrios Guatemala 224 817 248 797 317 646 326 833 31 Suape Brasil 237 077 293 133 242 765 324 191	21	Rio Grande	Brasil	607 275	601 580	629 586	647 188
24 Altamira México 407 657 436 234 400 968 488 013 25 Manaus Brasil 12 095 349 100 309 700 412 500 26 Port of Spain Trinidad y Tabago 357 486 385 000 401 206 27 Santo Tomas de Castilla Guatemala 307 727 322 519 329 946 392 768 28 San Vicente (SVTI) Chile 481 672 604 560 494 275 363 557 29 La Guaira Venezuela (República Bolivariana de) 421 545 436 911 378 318 333 539 30 Puerto Barrios Guatemala 224 817 248 797 317 646 326 833 31 Suape Brasil 237 077 293 133 242 765 324 191	22	Paranaguá	Brasil	595 261	595 729	630 597	546 564
25 Manaus Brasil 12 095 349 100 309 700 412 500 26 Port of Spain Trinidad y Tabago 357 486 385 000 401 206 27 Santo Tomas de Castilla Guatemala 307 727 322 519 329 946 392 768 28 San Vicente (SVTI) Chile 481 672 604 560 494 275 363 557 29 La Guaira Venezuela (República Bolivariana de) 421 545 436 911 378 318 333 539 30 Puerto Barrios Guatemala 224 817 248 797 317 646 326 833 31 Suape Brasil 237 077 293 133 242 765 324 191	23	Puerto Cortes	Honduras	553 139	572 382	484 148	538 853
26 Port of Spain Trinidad y Tabago 357 486 385 000 401 206 27 Santo Tomas de Castilla Guatemala 307 727 322 519 329 946 392 768 28 San Vicente (SVTI) Chile 481 672 604 560 494 275 363 557 29 La Guaira Venezuela (República Bolivariana de) 421 545 436 911 378 318 333 539 30 Puerto Barrios Guatemala 224 817 248 797 317 646 326 833 31 Suape Brasil 237 077 293 133 242 765 324 191	24	Altamira	México	407 657	436 234	400 968	488 013
27 Santo Tomas de Castilla Guatemala 307 727 322 519 329 946 392 768 28 San Vicente (SVTI) Chile 481 672 604 560 494 275 363 557 29 La Guaira Venezuela (República Bolivariana de) 421 545 436 911 378 318 333 539 30 Puerto Barrios Guatemala 224 817 248 797 317 646 326 833 31 Suape Brasil 237 077 293 133 242 765 324 191	25	Manaus	Brasil	12 095	349 100	309 700	412 500
28 San Vicente (SVTI) Chile 481 672 604 560 494 275 363 557 29 La Guaira Venezuela (República Bolivariana de) 421 545 436 911 378 318 333 539 30 Puerto Barrios Guatemala 224 817 248 797 317 646 326 833 31 Suape Brasil 237 077 293 133 242 765 324 191	26	Port of Spain	Trinidad y Tabago	357 486	385 000	401 206	
29 La Guaira Venezuela (República Bolivariana de) 421 545 436 911 378 318 333 539 30 Puerto Barrios Guatemala 224 817 248 797 317 646 326 833 31 Suape Brasil 237 077 293 133 242 765 324 191	27	Santo Tomas de Castilla	Guatemala	307 727	322 519	329 946	392 768
Bolivariana de) 30 Puerto Barrios Guatemala 224 817 248 797 317 646 326 833 31 Suape Brasil 237 077 293 133 242 765 324 191	28	San Vicente (SVTI)	Chile	481 672	604 560	494 275	363 557
31 Suape Brasil 237 077 293 133 242 765 324 191	29	La Guaira	` L	421 545	436 911	378 318	333 539
·	30	Puerto Barrios	Guatemala	224 817	248 797	317 646	326 833
32 Rio de Janeiro Brasil 387 809 428 191 350 295 315 489	31	Suape	Brasil	237 077	293 133	242 765	324 191
	32	Rio de Janeiro	Brasil	387 809	428 191	350 295	315 489

33 Haina República Dominicana 248 695 283 229 277 971 288 417 34 Iquique Chile 263 251 334 302 207 940 264 974 35 Puerto Quetzal Guatemala 235 452 278 789 212 941 251 034 36 Vitória Brasil 267 7890 271 786 209 096 243 788 37 Salvador Brasil 230 270 263 722 244 204 233 736 38 Lirguen Chile 203 578 231 397 205 41 231 636 39 Point Lisas Trinidad y Tabago 156 015 169 093 164 183 184 257 40 Pecem Brasil 143 667 144 416 137 487 169 300 41 Caldera Costa Rica 133 718 169 827 127 688 155 307 42 Chibatao Brasil 144 458 156 323 115 105 145 734 43 Acajutla El Salvador 144 458 156	Ranking 2010	- Puerto	País	TEU 2007	TEU 2008	TEU 2009	TEU 2010
35 Puerto Quetzal Guatemala 235 452 278 798 212 941 251 034 36 Vitória Brasil 267 890 271 786 209 096 243 788 37 Salvador Brasil 230 270 263 722 244 204 233 736 38 Lirquen Chile 205 788 231 397 206 541 231 636 39 Point Lisas Trinidad y Tabago 156 015 169 093 164 183 184 257 40 Pecem Brasil 143 667 144 416 137 487 169 300 41 Caldera Costa Rica 1378 169 827 127 658 155 307 42 Chibatao Brasil 144 458 156 6323 115 165 145 774 43 Acajuuta El Salvador 144 458 156 6323 115 165 145 774 44 Jarry Guadalupe 168 839 170 729 142 692 45 Coronel Chile 120 324 110 423	33	Haina	República Dominicana	248 695	283 229	277 971	288 417
36 Vitória Brasil 267 890 271 786 209 096 243 788 37 Salvador Brasil 230 270 263 722 244 204 233 736 38 Lirquen Chile 203 578 231 397 206 541 231 636 39 Point Lisas Trinidad y Tabago 156 015 169 093 164 183 184 257 40 Pecem Brasil 143 667 144 416 137 487 169 300 41 Caldera Costa Rica 133 718 169 827 127 658 155 300 42 Chibato Brasil 144 458 156 323 115 165 145 744 43 Acajutha Eli Salvador 144 458 156 323 115 165 145 744 44 Jarry Guadalupe 168 839 170 729 142 692 45 Coronel Chile 1 228 968 118 233 139 474 46 Ensenada México 120 324 110 423 110 952 </th <th>34</th> <th>Iquique</th> <th>Chile</th> <th>263 251</th> <th>334 302</th> <th>207 940</th> <th>264 974</th>	34	Iquique	Chile	263 251	334 302	207 940	264 974
37 Salvador Brasil 230 270 263 722 244 204 233 736 38 Lirquen Chile 203 578 231 397 206 541 231 636 39 Point Lisas Trinidad y Tabago 156 015 169 093 164 183 184 257 40 Pecem Brasil 143 667 144 416 137 487 169 300 41 Caldera Costa Rica 133 718 169 827 127 658 155 307 42 Chibatao Brasil 133 718 169 827 127 658 155 307 43 Acajutla El Salvador 144 488 156 323 115 165 145 774 44 Jarry Guadalupe 168 839 170 729 142 692 45 Coronel Chile 1 228 968 118 253 139 474 46 Ensenada México 120 324 110 423 110 925 135 966 47 Arica Chile 87 335 116 720 109 572	35	Puerto Quetzal	Guatemala	235 452	278 798	212 941	251 034
38 Lirquen Chile 203 578 231 397 206 541 231 636 39 Point Lisas Trinidad y Tabago 156 015 169 093 164 183 184 257 40 Pecem Brasil 143 667 144 416 137 487 169 300 41 Caldera Costa Rica 133 718 169 827 127 658 155 307 42 Chibatao Brasil 144 458 169 827 127 658 155 307 43 Acajutla El Salvador 144 458 156 323 115 165 145 774 44 Jarry Guadalupe 168 839 170 729 142 692 45 Coronel Chile 1228 968 118 253 139 474 46 Ensenada México 120 324 110 423 110 952 135 606 47 Arica Chile 87 335 116 720 109 572 130 984 48 Puerto Angamos Chile 87 335 116 720 109 572 <th>36</th> <th>Vitória</th> <th>Brasil</th> <th>267 890</th> <th>271 786</th> <th>209 096</th> <th>243 788</th>	36	Vitória	Brasil	267 890	271 786	209 096	243 788
39 Point Lisas Trinidad y Tabago 156 015 169 093 164 183 184 257 40 Pecem Brasil 143 667 144 416 137 487 169 300 41 Caldera Costa Rica 133 718 169 827 127 658 155 307 42 Chibatao Brasil 154 244 43 Acajutla El Salvador 144 458 156 323 115 165 145 774 44 Jarry Guadalupe 168 839 170 729 142 692 45 Coronel Chile 1 228 968 118 253 139 474 46 Ensenada México 120 324 110 423 110 952 135 606 47 Arica Chile 87 335 116 720 109 572 130 984 48 Puerto Angamos Chile 87 335 116 720 109 572 130 984 48 Puerto Angamos Chile 93 000 97 226 117 924 129 000	37	Salvador	Brasil	230 270	263 722	244 204	233 736
40 Pecem Brasil 143 667 144 416 137 487 169 300 41 Caldera Costa Rica 133 718 169 827 127 658 155 307 42 Chibatao Brasil 154 244 43 Acajutla El Salvador 144 458 156 323 115 165 145 774 44 Jarry Guadatupe 168 839 170 729 142 692 45 Coronel Chile 1 228 968 118 253 139 474 46 Ensenada México 120 324 110 423 110 952 135 606 47 Arica Chile 87 335 116 720 109 572 130 984 48 Puerto Angamos Chile 93 000 97 226 117 924 129 000 49 Paita Perú 109 136 138 993 114 216 126 520 50 Itaguai /Sepetiba Brasil 29 742 282 007 206 667 125 196 51<	38	Lirquen	Chile	203 578	231 397	206 541	231 636
41 Caldera Costa Rica 133 718 169 827 127 658 155 307 42 Chibatao Brasil 154 244 43 Acajutla El Salvador 144 458 156 323 115 165 145 774 44 Jarry Guadalupe 168 839 170 729 142 692 45 Coronel Chile 1 228 968 118 253 139 474 46 Ensenada México 120 324 110 423 110 952 135 606 47 Arica Chile 87 335 116 720 109 572 130 984 48 Puerto Angamos Chile 93 000 97 226 117 924 129 000 49 Paita Perú 109 136 138 993 114 216 126 520 50 Itaguai /Sepetiba Brasil 229 742 282 007 206 667 125 196 51 São Francisco do Sul Brasil 316 050 237 027 190 321 113 251	39	Point Lisas	Trinidad y Tabago	156 015	169 093	164 183	184 257
Chibatao Brasil 154 244	40	Pecem	Brasil	143 667	144 416	137 487	169 300
43 Acajutla El Salvador 144 458 156 323 115 165 145 774 44 Jarry Guadalupe 168 839 170 729 142 692 45 Coronel Chile 1 228 968 118 253 139 474 46 Ensenada México 120 324 110 423 110 952 135 606 47 Arica Chile 87 335 116 720 109 572 130 984 48 Puerto Angamos Chile 93 000 97 226 117 924 129 000 49 Paita Perú 109 136 138 993 114 216 126 520 50 Itaguai /Sepetiba Brasil 229 742 282 007 206 667 125 196 51 São Francisco do Sul Brasil 316 050 237 027 190 321 113 251 52 Barranquilla (Inc.SPR y ZP) Colombia 52 952 81 799 83 926 103 869 53 Antofagasta Chile 72 365 76 683	41	Caldera	Costa Rica	133 718	169 827	127 658	155 307
44 Jarry Guadalupe 168 839 170 729 142 692 45 Coronel Chile 1 228 968 118 253 139 474 46 Ensenada México 120 324 110 423 110 952 135 606 47 Arica Chile 87 335 116 720 109 572 130 984 48 Puerto Angamos Chile 93 000 97 226 117 924 129 000 49 Paita Perú 109 136 138 993 114 216 126 520 50 Itaguai /Sepetiba Brasil 229 742 282 007 206 667 125 196 51 São Francisco do Sul Brasil 316 050 237 027 190 321 113 251 52 Barranquilla (Inc.SPR y ZP) Colombia 52 952 81 799 83 926 103 869 53 Antofagasta Chile 72 365 76 683 81 44 103 795 54 Willemstad/ Curaca Antillas Neerlandesas 97 271	42	Chibatao	Brasil				154 244
45 Coronel Chile 1 228 968 118 253 139 474 46 Ensenada México 120 324 110 423 110 952 135 606 47 Arica Chile 87 335 116 720 109 572 130 984 48 Puerto Angamos Chile 93 000 97 226 117 924 129 000 49 Paita Perú 109 136 138 993 114 216 126 520 50 Itaguai /Sepetiba Brasil 229 742 282 007 206 667 125 196 51 São Francisco do Sul Brasil 316 050 237 027 190 321 113 251 52 Barranquilla (Inc.SPR y ZP) Colombia 52 952 81 799 83 926 103 869 53 Antofagasta Chile 72 365 76 683 81 414 103 795 54 Willemstad/ Curacao Antillas Neerlandesas 97 271 102 082 97 913 55 Santa Marta (inc. SPR y ZP) Colombia <th< th=""><th>43</th><th>Acajutla</th><th>El Salvador</th><th>144 458</th><th>156 323</th><th>115 165</th><th>145 774</th></th<>	43	Acajutla	El Salvador	144 458	156 323	115 165	145 774
46 Ensenada México 120 324 110 423 110 952 135 606 47 Arica Chile 87 335 116 720 109 572 130 984 48 Puerto Angamos Chile 93 000 97 226 117 924 129 000 49 Paita Perú 109 136 138 993 114 216 126 520 50 Itaguai /Sepetiba Brasil 229 742 282 007 206 667 125 196 51 São Francisco do Sul Brasil 316 050 237 027 190 321 113 251 52 Barranquilla (Inc.SPR y ZP) Colombia 52 952 81 799 83 926 103 869 53 Antofagasta Chile 72 365 76 683 81 414 103 795 54 Willemstad/ Curacao Antillas Neerlandesas 97 271 102 082 97 913 55 Santa Marta (inc. SPR y ZP) Colombia 92 174 77 113 85 772 91 161 56 Puerto Castilla Honduras <th>44</th> <th>Jarry</th> <th>Guadalupe</th> <th>168 839</th> <th>170 729</th> <th>142 692</th> <th></th>	44	Jarry	Guadalupe	168 839	170 729	142 692	
47 Arica Chile 87 335 116 720 109 572 130 984 48 Puerto Angamos Chile 93 000 97 226 117 924 129 000 49 Paita Perú 109 136 138 993 114 216 126 520 50 Itaguai /Sepetiba Brasil 229 742 282 007 206 667 125 196 51 São Francisco do Sul Brasil 316 050 237 027 190 321 113 251 52 Barranquilla (Inc.SPR y ZP) Colombia 52 952 81 799 83 926 103 869 53 Antofagasta Chile 72 365 76 683 81 414 103 795 54 Willemstad/ Curacao Antillas Neerlandesas 97 271 102 082 97 913 55 Santa Marta (inc. SPR y ZP) Colombia 92 174 77 113 85 772 91 161 56 Puerto Castilla Honduras 83 296 97 420 87 772 81 014 57 Bridgetown Barbados <th>45</th> <th>Coronel</th> <th>Chile</th> <th>1 228</th> <th>968</th> <th>118 253</th> <th>139 474</th>	45	Coronel	Chile	1 228	968	118 253	139 474
48 Puerto Angamos Chile 93 000 97 226 117 924 129 000 49 Paita Perú 109 136 138 993 114 216 126 520 50 Itaguai /Sepetiba Brasil 229 742 282 007 206 667 125 196 51 São Francisco do Sul Brasil 316 050 237 027 190 321 113 251 52 Barranquilla (Inc.SPR y ZP) Colombia 52 952 81 799 83 926 103 869 53 Antofagasta Chile 72 365 76 683 81 414 103 795 54 Willemstad/ Curacao Antillas Neerlandesas 97 271 102 082 97 913 55 Santa Marta (inc. SPR y ZP) Colombia 92 174 77 113 85 772 91 161 56 Puerto Castilla Honduras 83 296 97 420 87 772 81 014 57 Bridgetown Barbados 99 626 87 255 82 832 80 424 58 Fortaleza Brasil </th <th>46</th> <th>Ensenada</th> <th>México</th> <th>120 324</th> <th>110 423</th> <th>110 952</th> <th>135 606</th>	46	Ensenada	México	120 324	110 423	110 952	135 606
49 Paita Perú 109 136 138 993 114 216 126 520 50 Itaguai /Sepetiba Brasil 229 742 282 007 206 667 125 196 51 São Francisco do Sul Brasil 316 050 237 027 190 321 113 251 52 Barranquilla (Inc.SPR y ZP) Colombia 52 952 81 799 83 926 103 869 53 Antofagasta Chile 72 365 76 683 81 414 103 795 54 Willemstad/ Curacao Antillas Neerlandesas 97 271 102 082 97 913 55 Santa Marta (inc. SPR y ZP) Colombia 92 174 77 113 85 772 91 161 56 Puerto Castilla Honduras 83 296 97 420 87 772 81 014 57 Bridgetown Barbados 99 626 87 255 82 832 80 424 58 Fortaleza Brasil 60 309 53 121 55 169 69 796 59 Corinto Nicaragua	47	Arica	Chile	87 335	116 720	109 572	130 984
50 Itaguai /Sepetiba Brasil 229 742 282 007 206 667 125 196 51 São Francisco do Sul Brasil 316 050 237 027 190 321 113 251 52 Barranquilla (Inc.SPR y ZP) Colombia 52 952 81 799 83 926 103 869 53 Antofagasta Chile 72 365 76 683 81 414 103 795 54 Willemstad/ Curacao Antillas Neerlandesas 97 271 102 082 97 913 55 Santa Marta (inc. SPR y ZP) Colombia 92 174 77 113 85 772 91 161 56 Puerto Castilla Honduras 83 296 97 420 87 772 81 014 57 Bridgetown Barbados 99 626 87 255 82 832 80 424 58 Fortaleza Brasil 60 309 53 121 55 169 69 796 59 Corinto Nicaragua 46 633 58 879 55 742 64 816 60 Esmeraldas Ecuador <th>48</th> <th>Puerto Angamos</th> <th>Chile</th> <th>93 000</th> <th>97 226</th> <th>117 924</th> <th>129 000</th>	48	Puerto Angamos	Chile	93 000	97 226	117 924	129 000
51 São Francisco do Sul Brasil 316 050 237 027 190 321 113 251 52 Barranquilla (Inc.SPR y ZP) Colombia 52 952 81 799 83 926 103 869 53 Antofagasta Chile 72 365 76 683 81 414 103 795 54 Willemstad/ Curacao Antillas Neerlandesas 97 271 102 082 97 913 55 Santa Marta (inc. SPR y ZP) Colombia 92 174 77 113 85 772 91 161 56 Puerto Castilla Honduras 83 296 97 420 87 772 81 014 57 Bridgetown Barbados 99 626 87 255 82 832 80 424 58 Fortaleza Brasil 60 309 53 121 55 169 69 796 59 Corinto Nicaragua 46 633 58 879 55 742 64 816 60 Esmeraldas Ecuador 45 038 54 885 44 341 62 017 61 Puerto Bolivar Ecuador	49	Paita	Perú	109 136	138 993	114 216	126 520
52 Barranquilla (Inc.SPR y ZP) Colombia 52 952 81 799 83 926 103 869 53 Antofagasta Chile 72 365 76 683 81 414 103 795 54 Willemstad/ Curacao Antillas Neerlandesas 97 271 102 082 97 913 55 Santa Marta (inc. SPR y ZP) Colombia 92 174 77 113 85 772 91 161 56 Puerto Castilla Honduras 83 296 97 420 87 772 81 014 57 Bridgetown Barbados 99 626 87 255 82 832 80 424 58 Fortaleza Brasil 60 309 53 121 55 169 69 796 59 Corinto Nicaragua 46 633 58 879 55 742 64 816 60 Esmeraldas Ecuador 45 038 54 885 44 341 62 017 61 Puerto Bolivar Ecuador 36 640 48 101 68 530 61 940 62 Progreso México 75 584<	50	Itaguai /Sepetiba	Brasil	229 742	282 007	206 667	125 196
53 Antofagasta Chile 72 365 76 683 81 414 103 795 54 Willemstad/ Curacao Antillas Neerlandesas 97 271 102 082 97 913 55 Santa Marta (inc. SPR y ZP) Colombia 92 174 77 113 85 772 91 161 56 Puerto Castilla Honduras 83 296 97 420 87 772 81 014 57 Bridgetown Barbados 99 626 87 255 82 832 80 424 58 Fortaleza Brasil 60 309 53 121 55 169 69 796 59 Corinto Nicaragua 46 633 58 879 55 742 64 816 60 Esmeraldas Ecuador 45 038 54 885 44 341 62 017 61 Puerto Bolivar Ecuador 36 640 48 101 68 530 61 940 62 Progreso México 75 584 66 477 53 517 56 434 63 Georgetown-Cayman Islas Caimán 57 701	51	São Francisco do Sul	Brasil	316 050	237 027	190 321	113 251
54 Willemstad/ Curacao Antillas Neerlandesas 97 271 102 082 97 913 55 Santa Marta (inc. SPR y ZP) Colombia 92 174 77 113 85 772 91 161 56 Puerto Castilla Honduras 83 296 97 420 87 772 81 014 57 Bridgetown Barbados 99 626 87 255 82 832 80 424 58 Fortaleza Brasil 60 309 53 121 55 169 69 796 59 Corinto Nicaragua 46 633 58 879 55 742 64 816 60 Esmeraldas Ecuador 45 038 54 885 44 341 62 017 61 Puerto Bolivar Ecuador 36 640 48 101 68 530 61 940 62 Progreso México 75 584 66 477 53 517 56 434 63 Georgetown-Cayman Islas Caimán 57 701 54 584 51 198 45 649 64 Puerto Plata República Dominicana <th< th=""><th>52</th><th>Barranquilla (Inc.SPR y ZP)</th><th>Colombia</th><th>52 952</th><th>81 799</th><th>83 926</th><th>103 869</th></th<>	52	Barranquilla (Inc.SPR y ZP)	Colombia	52 952	81 799	83 926	103 869
55 Santa Marta (inc. SPR y ZP) Colombia 92 174 77 113 85 772 91 161 56 Puerto Castilla Honduras 83 296 97 420 87 772 81 014 57 Bridgetown Barbados 99 626 87 255 82 832 80 424 58 Fortaleza Brasil 60 309 53 121 55 169 69 796 59 Corinto Nicaragua 46 633 58 879 55 742 64 816 60 Esmeraldas Ecuador 45 038 54 885 44 341 62 017 61 Puerto Bolivar Ecuador 36 640 48 101 68 530 61 940 62 Progreso México 75 584 66 477 53 517 56 434 63 Georgetown-Cayman Islas Caimán 57 701 54 584 51 198 45 649 64 Puerto Plata República Dominicana 38 036 43 622 33 029 44 147 65 Ushuaia Argentina 55 730 <	53	Antofagasta	Chile	72 365	76 683	81 414	103 795
56 Puerto Castilla Honduras 83 296 97 420 87 772 81 014 57 Bridgetown Barbados 99 626 87 255 82 832 80 424 58 Fortaleza Brasil 60 309 53 121 55 169 69 796 59 Corinto Nicaragua 46 633 58 879 55 742 64 816 60 Esmeraldas Ecuador 45 038 54 885 44 341 62 017 61 Puerto Bolivar Ecuador 36 640 48 101 68 530 61 940 62 Progreso México 75 584 66 477 53 517 56 434 63 Georgetown-Cayman Islas Caimán 57 701 54 584 51 198 45 649 64 Puerto Plata República Dominicana 38 036 43 622 33 029 44 147 65 Ushuaia Argentina 55 730 58 869 39 593 66 Rosario (inc.G.Lagos, P.Alv., A.Seco, V.G.Galvez) Argentina 2	54	Willemstad/ Curacao	Antillas Neerlandesas	97 271	102 082	97 913	
57 Bridgetown Barbados 99 626 87 255 82 832 80 424 58 Fortaleza Brasil 60 309 53 121 55 169 69 796 59 Corinto Nicaragua 46 633 58 879 55 742 64 816 60 Esmeraldas Ecuador 45 038 54 885 44 341 62 017 61 Puerto Bolivar Ecuador 36 640 48 101 68 530 61 940 62 Progreso México 75 584 66 477 53 517 56 434 63 Georgetown-Cayman Islas Caimán 57 701 54 584 51 198 45 649 64 Puerto Plata República Dominicana 38 036 43 622 33 029 44 147 65 Ushuaia Argentina 55 730 58 869 39 593 66 Rosario (inc.G.Lagos,P.Alv., A.Seco,V.G.Galvez) Argentina 26 109 42 151 39 138 67 Belém Brasil 67 141 42 538 43 572 34 496	55	Santa Marta (inc. SPR y ZP)	Colombia	92 174	77 113	85 772	91 161
58 Fortaleza Brasil 60 309 53 121 55 169 69 796 59 Corinto Nicaragua 46 633 58 879 55 742 64 816 60 Esmeraldas Ecuador 45 038 54 885 44 341 62 017 61 Puerto Bolivar Ecuador 36 640 48 101 68 530 61 940 62 Progreso México 75 584 66 477 53 517 56 434 63 Georgetown-Cayman Islas Caimán 57 701 54 584 51 198 45 649 64 Puerto Plata República Dominicana 38 036 43 622 33 029 44 147 65 Ushuaia Argentina 55 730 58 869 39 593 66 Rosario (inc.G.Lagos,P.Alv., A.Seco,V.G.Galvez) Argentina 26 109 42 151 39 138 67 Belém Brasil 67 141 42 538 43 572 34 496	56	Puerto Castilla	Honduras	83 296	97 420	87 772	81 014
59 Corinto Nicaragua 46 633 58 879 55 742 64 816 60 Esmeraldas Ecuador 45 038 54 885 44 341 62 017 61 Puerto Bolivar Ecuador 36 640 48 101 68 530 61 940 62 Progreso México 75 584 66 477 53 517 56 434 63 Georgetown-Cayman Islas Caimán 57 701 54 584 51 198 45 649 64 Puerto Plata República Dominicana 38 036 43 622 33 029 44 147 65 Ushuaia Argentina 55 730 58 869 39 593 66 Rosario (inc.G.Lagos,P.Alv., A.Seco,V.G.Galvez) Argentina 26 109 42 151 39 138 67 Belém Brasil 67 141 42 538 43 572 34 496	57	Bridgetown	Barbados	99 626	87 255	82 832	80 424
Esmeraldas Ecuador 45 038 54 885 44 341 62 017 61 Puerto Bolivar Ecuador 36 640 48 101 68 530 61 940 62 Progreso México 75 584 66 477 53 517 56 434 63 Georgetown-Cayman Islas Caimán 57 701 54 584 51 198 45 649 64 Puerto Plata República Dominicana 38 036 43 622 33 029 44 147 65 Ushuaia Argentina 55 730 58 869 39 593 66 Rosario (inc.G.Lagos,P.Alv., Argentina 26 109 42 151 39 138 67 Belém Brasil 67 141 42 538 43 572 34 496	58	Fortaleza	Brasil	60 309	53 121	55 169	69 796
61 Puerto Bolivar Ecuador 36 640 48 101 68 530 61 940 62 Progreso México 75 584 66 477 53 517 56 434 63 Georgetown-Cayman Islas Caimán 57 701 54 584 51 198 45 649 64 Puerto Plata República Dominicana 38 036 43 622 33 029 44 147 65 Ushuaia Argentina 55 730 58 869 39 593 66 Rosario (inc.G.Lagos,P.Alv., A.Seco,V.G.Galvez) Argentina 26 109 42 151 39 138 67 Belém Brasil 67 141 42 538 43 572 34 496	59	Corinto	Nicaragua	46 633	58 879	55 742	64 816
62 Progreso México 75 584 66 477 53 517 56 434 63 Georgetown-Cayman Islas Caimán 57 701 54 584 51 198 45 649 64 Puerto Plata República Dominicana 38 036 43 622 33 029 44 147 65 Ushuaia Argentina 55 730 58 869 39 593 66 Rosario (inc.G.Lagos,P.Alv., A.Seco,V.G.Galvez) Argentina 26 109 42 151 39 138 67 Belém Brasil 67 141 42 538 43 572 34 496	60	Esmeraldas	Ecuador	45 038	54 885	44 341	62 017
63 Georgetown-Cayman Islas Caimán 57 701 54 584 51 198 45 649 64 Puerto Plata República Dominicana 38 036 43 622 33 029 44 147 65 Ushuaia Argentina 55 730 58 869 39 593 66 Rosario (inc.G.Lagos,P.Alv., A.Seco,V.G.Galvez) Argentina 26 109 42 151 39 138 67 Belém Brasil 67 141 42 538 43 572 34 496	61	Puerto Bolivar	Ecuador	36 640	48 101	68 530	61 940
64 Puerto Plata República Dominicana 38 036 43 622 33 029 44 147 65 Ushuaia Argentina 55 730 58 869 39 593 66 Rosario (inc.G.Lagos,P.Alv., A.Seco,V.G.Galvez) Argentina 26 109 42 151 39 138 67 Belém Brasil 67 141 42 538 43 572 34 496	62	Progreso	México	75 584	66 477	53 517	56 434
65 Ushuaia Argentina 55 730 58 869 39 593 66 Rosario (inc.G.Lagos,P.Alv., A.Seco,V.G.Galvez) Argentina 26 109 42 151 39 138 67 Belém Brasil 67 141 42 538 43 572 34 496	63	Georgetown-Cayman	Islas Caimán	57 701	54 584	51 198	45 649
66 Rosario (inc.G.Lagos,P.Alv., Argentina A.Seco,V.G.Galvez) Argentina 26 109 42 151 39 138 67 Belém Brasil 67 141 42 538 43 572 34 496	64	Puerto Plata	República Dominicana	38 036	43 622	33 029	44 147
A.Seco,V.G.Galvez) 67 Belém Brasil 67 141 42 538 43 572 34 496	65	Ushuaia	Argentina	55 730	58 869	39 593	
	66		Argentina	26 109	42 151	39 138	
68 Belize city Bélice 39 191 38 211 31 344	67	Belém	Brasil	67 141	42 538	43 572	34 496
	68	Belize city	Bélice	39 191	38 211	31 344	

Ranking 2010	- Puerto	País	TEU 2007	TEU 2008	TEU 2009	TEU 2010
69	Ilo	Perú	46 550	38 881	27 823	31 250
70	Vila do Conde	Brasil	28 913	23 815	27 691	30 840
71	Castries	Santa Lucía	36 117	35 977	30 186	30 648
72	Mazatlán	México	29 363	27 668	29 322	25 795
73	Imbituba	Brasil	15 616	16 704	20 063	25 462
74	St John	Antigua y Barbuda	34 081	32 562	29 150	24 615
75	Punta Arenas (Empresa Portuaria Austral)	Chile	22 118	27 008	22 636	24 359
76	Almirante (Bocas Fruit)	Panamá	14 080	9 846	20 696	23 702
77	Madryn	Argentina	20 808	24 011	20 453	23 346
78	Vieux Fort	Santa Lucía	19 464	34 225	21 756	21 831
79	Santo Domingo (ITTS)	República Dominicana		46 041	23 799	21 654
80	Matarani	Perú	7 293	19 824	19 584	18 278
81	Natal	Brasil	8 588	17 186	15 046	17 215
82	Bahia Blanca (inc. Muelle Andoni Irazusta)	Argentina	10 314	25 523	28 558	16 565
83	Kingstown (Inc. CPCP)	San Vicente y las Granadinas	16 659	16 570	16 238	
84	Manzanillo-DO	República Dominicana	1 554	8 190	10 880	14 949
85	Chacabuco	Chile	12 910	11 655	9 466	
86	Boca Chica	República Dominicana	20 207	19 909	10 985	7 977
87	Chimbote	Perú	2 994	2 004	6 760	7 186
88	Asunción	Paraguay		9 317	7 045	
89	Maceio	Brasil	5 898	8 430	7 302	6 740
90	Santarém	Brasil	0	4 709	4 716	5 516
91	Salina Cruz	México	734	4 714	13 111	5 434
92	Coquimbo	Chile	2 342	2 462	4 674	
93	Puerto Morelos	México	7 942	7 586	4 443	4 657
94	Manta	Ecuador	3 935	1 650	3 924	4 543
95	San Andres	Colombia	3 137	2 194		4 534
96	La Guajira (Cerrejon)	Colombia	2 355	3 377		3 941
97	Puerto Chiapas	México	80	1 102	0	3 590
98	Arlen Siu/El Rama	Nicaragua		3 706	3 293	3 223
99	Tampico	México	11 040	11 152	5 936	2 229
100	Porto Velho	Brasil	901	0	0	516

Fuente: Comisión Económica para América Latina y el Caribe (CEPAL) – Unidad de Servicios de Infraestructura.

CUADRO 2.21 CLASIFICACIÓN DE LOS 100 PUERTOS CON MÁS ACTIVIDAD EN 2010 EN TONELADAS DE MERCANCÍAS

	América Latina	y el Caribe: Movim	iento Portuario de 1	toneladas totales	(2007-2009)	
	Puerto	País	TON 2007	TON 2008	TON 2009	TON 2010
1	Tubarâo	Brasil	104 672 667	99 873 293	83 834 676	107 760 287
2	Ponta da Madeira	Brasil			87 716 016	96 364 127
3	Santos	Brasil	80 775 867	81 058 492	75 641 825	85 401 154
4	Itaguai /Sepetiba	Brasil	87 719 912	84 888 332	49 755 062	52 765 505
5	Cayo Arcas	México	67 176 757	61 011 040	51 777 328	
6	Almte. Barroso	Brasil		49 515 291	49 515 291	47 071 199
7	Santa Marta (inc. SPR y ZP)	Colombia	35 142 833	37 341 268	34 917 934	40 007 329
8	Almirante Maximiliano da Fonsea	Brasil			35 417 192	39 612 657
9	MBR	Brasil			36 664 915	37 718 177
10	La Guajira (Cerrejon)	Colombia	30 456 147	32 402 295	29 824 851	35 568 045
11	Paranaguá	Brasil	37 599 164	34 018 216	31 274 077	34 348 405
12	Callao	Perú	26 798 943	28 508 386	27 612 824	31 536 965
13	San Lorenzo/ San Martin	Argentina	44 533 347	43 069 827	30 498 787	
14	Coatzacoalcos	México	5 319 438	25 187 967	26 168 001	
15	Golfo Morrosquillo (Inc.SPR y ZP)	Colombia	11 766 146	14 446 029	19 208 514	25 109 314
16	Cartagena (inc. S.P.R, El Bosque, Contecar,ZP)	Colombia	16 299 328	20 000 703	19 151 374	24 452 509
17	Ponta Ubu	Brasil	16 686 749	17 660 461	19 084 850	23 005 992
18	Buenos Aires (incluye Exolgan)	Argentina	27 950 307	28 081 574	22 593 172	
19	Balao	Ecuador	21 919 942	22 340 139	20 832 270	21 446 285
20	Madre de Deus	Brasil			15 703 512	20 267 441
21	Lazaro Cárdenas	México	17 091 616	19 795 109	19 950 479	
22	Manzanillo	México	21 172 882	22 284 026	18 621 933	
23	São Francisco do Sul	Brasil	17 099 224	16 986 781	16 590 006	18 591 493
24	Kingston	Jamaica	17 795 135	16 340 168	16 201 507	17 437 635
25	Praia Mole	Brasil	17 568 665	20 505 162	15 251 584	17 398 887
26	Colón (MIT, Evergreen, Panamá Port)	Panamá	11 204 334	18 224 572	16 889 843	
27	Vila do Conde	Brasil	17 642 006	20 471 752	16 318 534	16 548 002
28	Porto Trombetas	Brasil			15 780 052	16 528 497
29	Rio Grande	Brasil	26 680 345	24 552 216	14 855 525	16 269 333
30	Veracruz	México	16 532 711	16 852 822	16 154 756	

Puerto País TON 2007 TON 2008 TON 2009 TON 2010		América Latina y e	l Caribe: Movimi	ento Portuario de t	toneladas totales	(2007-2009)	
32 San Antonio Chile 12 640 889 13 200 362 12 10 9 977 14 435 47 2 33 Charco Azul Panamá 6 018 252 6 353 126 14 141 962 34 Salina Cruz México 13 428 084 12 504 866 13 427 335 35 Itaqui Brasil 98 808 524 105 186 939 11 689 425 12 567 090 36 Guayaquil Ecuador 12 903 400 12 488 647 12 377 595 12 543 236 37 Ilha de agua Brasil 10 10 175 60 14 107 152 11 804 724 39 Quintero Chile 12 155 760 10 237 633 11 708 901 40 Altamira México 12 475 241 13 414 632 11 496 516 41 Almirante Soares Dutra Brasil 11 565 328 10 695 371 11 333 547 10 405 166 42 Buenaventura Colombia 11 565 328 10 695 371 11 333 547 10 405 166 43		Puerto	País	TON 2007	TON 2008	TON 2009	TON 2010
33 Charco Azul Panamá 6 018 252 6 353 126 14 141 962 34 Salina Cruz México 13 428 084 12 504 866 13 427 335 35 Iraqui Brasil 98 808 524 105 186 939 11 689 425 12 567 090 36 Guayaquil Ecuador 12 903 400 12 488 647 12 377 595 12 543 236 37 Ilha de agua Brasil 10 619 756 11 842 997 38 Isla Cedros México 12 713 656 14 107 152 11 804 724 39 Quintero Chile 12 155 760 10 237 633 11 708 901 40 Altamira México 12 475 241 13 414 632 11 496 516 41 Almirante Soares Dutra Brasil 11 565 328 10 695 371 11 333 547 10 405 166 43 Valparaiso Chile 9 713 720 10 898 860 7 975 762 10 151 112 44 Bahia Blanca Inc. Welle Andoni Irazusta) <th>31</th> <th>Balboa</th> <th>Panamá</th> <th>15 037 786</th> <th>15 725 610</th> <th>15 524 998</th> <th></th>	31	Balboa	Panamá	15 037 786	15 725 610	15 524 998	
34 Salina Cruz México 13 428 084 12 504 866 13 427 335 35 Inaqui Brasil 98 808 524 105 186 939 11 689 425 12 567 090 36 Guayaquil Ecuador 12 903 400 12 488 647 12 377 595 12 543 236 37 Ilha de agua Brasil 10 619 756 11 842 997 38 Isla Cedros México 12 713 656 14 107 152 11 804 724 39 Quintero Chile 12 155 760 10 237 633 11 708 901 41 Almiran México 12 475 241 13 414 632 11 496 516 41 Almiran Bounaventura Colombia 11 565 328 10 695 371 11 333 547 10 405 166 41 Bahia Blanca (inc. SPR y ZP) Chile 9 713 720 10 898 860 7 975 762 10 151 112 44 Bahia Blanca (inc. Muelle Andoni Irazusta) Argentina 13 409 198 12 676 308 10 094 712 10 151 1	32	San Antonio	Chile	12 640 889	13 200 362	12 109 977	14 435 472
35 Itaqui Brasil 98 808 524 105 186 939 11 689 425 12 507 090 36 Guayaquil Ecuador 12 903 400 12 488 647 12 377 595 12 543 236 37 Ilha de agua Brasil 10 619 756 11 842 997 38 Isla Cedros México 12 713 656 14 107 152 11 804 724 39 Quintero Chile 12 155 760 10 237 633 11 708 901 40 Altamira México 12 475 241 13 414 632 11 496 516 41 Almirante Soares Dutra Brasil 12 257 718 11 322 227 42 Buenaventura (inc. SPR y ZP) Colombia 11 565 328 10 695 371 11 333 547 10 405 166 43 Valparaiso Chile 9 713 720 10 898 860 7 975 762 10 151 112 44 Bahia Blanca Chile 9 713 720 10 898 860 7 975 762 10 151 112 44 Limón-Moin Costa Rica 9 920	33	Charco Azul	Panamá	6 018 252	6 353 126	14 141 962	
36 Guayaquil Ecuador 12 903 400 12 488 647 12 377 595 12 543 236 37 Ilha de agua Brasil 10 619 756 11 842 997 38 Isla Cedros México 12 713 656 14 107 152 11 804 724 39 Quintero Chile 12 155 760 10 237 633 11 708 901 40 Altamira México 12 475 241 13 414 632 11 496 516 41 Almirante Soares Dutra Brasil 12 257 718 11 322 227 42 Buenaventura (inc. SPR y ZP) Colombia 11 565 328 10 695 371 11 333 547 10 405 166 43 Valparaiso Chile 9 713 720 10 898 860 7 975 762 10 151 112 44 Bahia Blanca (inc. Muelle Andoni Irazusta) Argentina 13 409 198 12 676 308 10 094 712 45 Limón-Moin Costa Rica 9 920 617 10 104 173 8 965 761 9 943 072 46 Rosales Arge	34	Salina Cruz	México	13 428 084	12 504 866	13 427 335	
37 Ilha de agua Brasil 10 619 756 11 842 997 38 Isla Cedros México 12 713 656 14 107 152 11 804 724 39 Quintero Chile 12 155 760 10 237 633 11 708 901 40 Altamira México 12 475 241 13 414 632 11 496 516 41 Almirante Soares Dutra Brasil 12 257 718 11 322 227 42 Buenaventura (inc. SPR y ZP) Colombia 11 565 328 10 695 371 11 333 547 10 405 166 43 Valparaiso Chile 9 713 720 10 898 860 7 975 762 10 151 112 44 Bahia Blanca (inc. Muelle Andoni Irazusta) Argentina 13 409 198 12 676 308 10 094 712 45 Limón-Moin Costa Rica 9 920 617 10 104 173 8 965 761 9 943 072 46 Rosales Argentina 11 732 994 11 349 998 9 619 918 9 897 087 47 Tuxpan México<	35	Itaqui	Brasil	98 808 524	105 186 939	11 689 425	12 567 090
Sala Cedros México 12 713 656 14 107 152 11 804 724	36	Guayaquil	Ecuador	12 903 400	12 488 647	12 377 595	12 543 236
39 Quintero Chile 12 155 760 10 237 633 11 708 901 40 Altamira México 12 475 241 13 414 632 11 496 516 41 Almirante Soares Dutra Brasil 12 257 718 11 322 227 42 Buenaventura (inc. SPR y ZP) Colombia 11 565 328 10 695 371 11 333 547 10 405 166 43 Valparaiso Chile 9 713 720 10 898 860 7 975 762 10 151 112 44 Bahia Blanca (inc. Muelle Andoni Irazusta) Argentina 13 409 198 12 676 308 10 094 712 45 Limón-Moin Costa Rica 9 920 617 10 104 173 8 965 761 9 943 072 46 Rosales Argentina 11 732 994 11 349 998 9 619 918 9 897 087 47 Tuxpan México 10 276 428 9 508 730 9 608 291 48 Haina República 10 196 813 9 814 027 8 177 238 9 473 263 50	37	Ilha de agua	Brasil			10 619 756	11 842 997
40 Altamira México 12 475 241 13 414 632 11 496 516 41 Almirante Soares Dutra Brasil 12 257 718 11 322 227 42 Buenaventura (inc. SPR y ZP) Colombia 11 565 328 10 695 371 11 333 547 10 405 166 43 Valparaiso Chile 9 713 720 10 898 860 7 975 762 10 151 112 44 Bahia Blanca (inc. Muelle Andoni Irazusta) Argentina 13 409 198 12 676 308 10 094 712 45 Limôn-Moin Costa Rica 9 920 617 10 104 173 8 965 761 9 943 072 46 Rosales Argentina 11 732 994 11 349 998 9 619 918 9 897 087 47 Tuxpan México 10 276 428 9 508 730 9 608 291 48 Haina República Dominicana 10 196 813 9 814 027 8 177 238 9 473 263 50 Alumar Brasil 6 488 223 8 655 042 7 520 799 8 986 653 </th <th>38</th> <th>Isla Cedros</th> <th>México</th> <th>12 713 656</th> <th>14 107 152</th> <th>11 804 724</th> <th></th>	38	Isla Cedros	México	12 713 656	14 107 152	11 804 724	
41 Almirante Soares Dutra Brasil 12 257 718 11 322 227 42 Buenaventura (inc. SPR y ZP) Colombia 11 565 328 10 695 371 11 333 547 10 405 166 43 Valparaiso Chile 9 713 720 10 898 860 7 975 762 10 151 112 44 Bahia Blanca (inc. Muelle Andoni Irazusta) Argentina 13 409 198 12 676 308 10 094 712 45 Limón-Moin Costa Rica 9 920 617 10 104 173 8 965 761 9 943 072 46 Rosales Argentina 11 732 994 11 349 998 9 619 918 9 897 087 47 Tuxpan México 10 276 428 9 508 730 9 608 291 48 Haina República Dominicana 10 196 813 9 814 027 8 177 238 9 473 263 50 Alumar Brasil 6 488 223 8 655 042 7 596 044 9 178 327 51 Suape Brasil 6 488 223 8 655 042 7 520 799 8 989 653 52	39	Quintero	Chile	12 155 760	10 237 633	11 708 901	
42 Buenaventura (inc. SPR y ZP) Colombia 11 565 328 10 695 371 11 333 547 10 405 166 43 Valparaiso Chile 9 713 720 10 898 860 7 975 762 10 151 112 44 Bahia Blanca (inc. Muelle Andoni Irazusta) Argentina 13 409 198 12 676 308 10 094 712 45 Limón-Moin Costa Rica 9 920 617 10 104 173 8 965 761 9 943 072 46 Rosales Argentina 11 732 994 11 349 998 9 619 918 9 897 087 47 Tuxpan México 10 276 428 9 508 730 9 608 291 48 Haina República Dominicana 10 196 813 9 814 027 8 177 238 9 473 263 49 Montevideo Uruguay 8 100 263 9 088 978 7 596 044 9 178 327 50 Alumar Brasil 6 488 223 8 655 042 7 520 799 8 989 653 51 Suape Brasil 6 488 223 8 655 042 7 520 799 8 989 653 <th>40</th> <th>Altamira</th> <th>México</th> <th>12 475 241</th> <th>13 414 632</th> <th>11 496 516</th> <th></th>	40	Altamira	México	12 475 241	13 414 632	11 496 516	
(inc. SPR y ZP) 43 Valparaiso Chile 9 713 720 10 898 860 7 975 762 10 151 112 44 Bahia Blanca (inc. Muelle Andoni Irazusta) 45 Limón-Moin Costa Rica 9 920 617 10 104 173 8 965 761 9 943 072 46 Rosales Argentina 11 732 994 11 349 998 9 619 918 9 897 087 47 Tuxpan México 10 276 428 9 508 730 9 608 291 48 Haina República 10 10 168 13 9 814 027 8 177 238 9473 263 Dominicana 49 Montevideo Uruguay 8 100 263 9 088 978 7 596 044 9 178 327 50 Alumar Brasil 5 5 620 180 9 128 610 51 Suape Brasil 6 488 223 8 655 042 7 520 799 8 989 653 52 San Nicolas-PE Perú 8 145 807 8 013 969 7 302 720 8 683 309 53 Tampico México 9 228 081 8 830 598 8 498 049 54 Puerto Cortes Honduras 8 010 506 8 527 276 7 366 269 8 383 226 55 Punta Venado México 8 772 992 10 218 573 8 215 676 56 Portocel Brasil 7 309 884 7 008 621 6 139 341 7 645 428 58 Puerto Quetzal Guatemala 7 525 810 6 979 370 6 718 880 7 5778 800 59 Caucedo República Dominicana 60 Dos Bocas México 982 014 9 619 265 7 251 195 61 Rio de Janeiro Brasil 11 800 925 16 265 750 5 736 679 6 571 578 63 Vitória Brasil 11 800 925 16 265 750 5 736 679 6 571 578 63 Vitória Brasil 8 105 619 7 222 270 4 768 782 6 568 84 64 Barranquilla Colombia 6 452 025 6 262 240 5 284 558 6 389 272	41	Almirante Soares Dutra	Brasil			12 257 718	11 322 227
44 Bahia Blanca (inc. Muelle Andoni Irazusta) Argentina 13 409 198 12 676 308 10 094 712 45 Limón-Moin Costa Rica 9 920 617 10 104 173 8 965 761 9 943 072 46 Rosales Argentina 11 732 994 11 349 998 9 619 918 9 897 087 47 Tuxpan México 10 276 428 9 508 730 9 608 291 48 Haina República Dominicana 10 196 813 9 814 027 8 177 238 9 473 263 50 Alumar Brasil 5 620 180 9 128 610 51 Suape Brasil 6 488 223 8 655 042 7 520 799 8 989 653 52 San Nicolas-PE Perú 8 145 807 8 013 969 7 302 720 8 683 309 53 Tampico México 9 228 081 8 830 598 8 498 049 54 Puerto Cortes Honduras 8 010 506 8 527 276 7 366 269 8 383 226 55 Punta Venado México </th <th>42</th> <th></th> <th>Colombia</th> <th>11 565 328</th> <th>10 695 371</th> <th>11 333 547</th> <th>10 405 166</th>	42		Colombia	11 565 328	10 695 371	11 333 547	10 405 166
45 Limón-Moin Costa Rica 9 920 617 10 104 173 8 965 761 9 943 072 46 Rosales Argentina 11 732 994 11 349 998 9 619 918 9 897 087 47 Tuxpan México 10 276 428 9 508 730 9 608 291 48 Haina República Dominicana 10 196 813 9 814 027 8 177 238 9 473 263 49 Montevideo Uruguay 8 100 263 9 088 978 7 596 044 9 178 327 50 Alumar Brasil 6 488 223 8 655 042 7 596 044 9 178 327 51 Suape Brasil 6 488 223 8 655 042 7 520 799 8 989 653 52 San Nicolas-PE Perú 8 145 807 8 013 969 7 302 720 8 683 309 53 Tampico México 9 228 081 8 830 598 8 498 049 54 Puerto Cortes Honduras 8 010 506 8 527 276 7 366 269 8 383 226 55 Punta Venado <th>43</th> <th>Valparaiso</th> <th>Chile</th> <th>9 713 720</th> <th>10 898 860</th> <th>7 975 762</th> <th>10 151 112</th>	43	Valparaiso	Chile	9 713 720	10 898 860	7 975 762	10 151 112
46 Rosales Argentina 11 732 994 11 349 998 9 619 918 9 897 087 47 Tuxpan México 10 276 428 9 508 730 9 608 291 48 Haina República Dominicana 10 196 813 9 814 027 8 177 238 9 473 263 49 Montevideo Uruguay 8 100 263 9 088 978 7 596 044 9 178 327 50 Alumar Brasil 5 620 180 9 128 610 51 Suape Brasil 6 488 223 8 655 042 7 520 799 8 989 653 52 San Nicolas-PE Perú 8 145 807 8 013 969 7 302 720 8 683 309 53 Tampico México 9 228 081 8 830 598 8 498 049 54 Puerto Cortes Honduras 8 010 506 8 527 276 7 366 269 8 383 226 55 Punta Venado México 8 772 992 10 218 573 8 215 676 56 Portocel Brasil 7 309 884	44		Argentina	13 409 198	12 676 308	10 094 712	
47 Tuxpan México 10 276 428 9 508 730 9 608 291 48 Haina República Dominicana 10 196 813 9 814 027 8 177 238 9 473 263 49 Montevideo Uruguay 8 100 263 9 088 978 7 596 044 9 178 327 50 Alumar Brasil 5 620 180 9 128 610 51 Suape Brasil 6 488 223 8 655 042 7 520 799 8 989 653 52 San Nicolas-PE Perú 8 145 807 8 013 969 7 302 720 8 683 309 53 Tampico México 9 228 081 8 830 598 8 498 049 54 Puerto Cortes Honduras 8 010 506 8 527 276 7 366 269 8 383 226 55 Punta Venado México 8 772 992 10 218 573 8 215 676 56 Portocel Brasil 7 309 884 7 008 621 6 139 341 7 645 428 58 Puerto Quetzal Guatemala 7 525 810	45	Limón-Moin	Costa Rica	9 920 617	10 104 173	8 965 761	9 943 072
48 Haina República Dominicana 10 196 813 9 814 027 8 177 238 9 473 263 49 Montevideo Uruguay 8 100 263 9 088 978 7 596 044 9 178 327 50 Alumar Brasil 5 620 180 9 128 610 51 Suape Brasil 6 488 223 8 655 042 7 520 799 8 989 653 52 San Nicolas-PE Perú 8 145 807 8 013 969 7 302 720 8 683 309 53 Tampico México 9 228 081 8 830 598 8 498 049 54 Puerto Cortes Honduras 8 010 506 8 527 276 7 366 269 8 383 226 55 Punta Venado México 8 772 992 10 218 573 8 215 676 56 Portocel Brasil 7 309 884 7 008 621 6 139 341 7 645 428 57 Itajai (inc.Navegantes) Brasil 7 309 884 7 008 621 6 139 341 7 645 428 58 Puerto Quetzal Guatemala	46	Rosales	Argentina	11 732 994	11 349 998	9 619 918	9 897 087
Dominicana Dom	47	Tuxpan	México	10 276 428	9 508 730	9 608 291	
50 Alumar Brasil 5 620 180 9 128 610 51 Suape Brasil 6 488 223 8 655 042 7 520 799 8 989 653 52 San Nicolas-PE Perú 8 145 807 8 013 969 7 302 720 8 683 309 53 Tampico México 9 228 081 8 830 598 8 498 049 54 Puerto Cortes Honduras 8 010 506 8 527 276 7 366 269 8 383 226 55 Punta Venado México 8 772 992 10 218 573 8 215 676 56 Portocel Brasil 7 309 884 7 008 621 6 139 341 7 645 428 57 Itajai (inc.Navegantes) Brasil 7 309 884 7 008 621 6 139 341 7 645 428 58 Puerto Quetzal Guatemala 7 525 810 6 979 370 6 718 880 7 577 800 59 Caucedo República 6 771 641 6 802 305 7 474 103 60 Dos Bocas México 982 014	48	Haina		10 196 813	9 814 027	8 177 238	9 473 263
51 Suape Brasil 6 488 223 8 655 042 7 520 799 8 989 653 52 San Nicolas-PE Perú 8 145 807 8 013 969 7 302 720 8 683 309 53 Tampico México 9 228 081 8 830 598 8 498 049 54 Puerto Cortes Honduras 8 010 506 8 527 276 7 366 269 8 383 226 55 Punta Venado México 8 772 992 10 218 573 8 215 676 56 Portocel Brasil 7 309 884 7 008 621 6 139 341 7 645 428 57 Itajai (inc.Navegantes) Brasil 7 309 884 7 008 621 6 139 341 7 645 428 58 Puerto Quetzal Guatemala 7 525 810 6 979 370 6 718 880 7 577 800 59 Caucedo República Dominicana 6 771 641 6 802 305 7 474 103 60 Dos Bocas México 982 014 9 619 265 7 251 195 61 Rio de Ja	49	Montevideo	Uruguay	8 100 263	9 088 978	7 596 044	9 178 327
52 San Nicolas-PE Perú 8 145 807 8 013 969 7 302 720 8 683 309 53 Tampico México 9 228 081 8 830 598 8 498 049 54 Puerto Cortes Honduras 8 010 506 8 527 276 7 366 269 8 383 226 55 Punta Venado México 8 772 992 10 218 573 8 215 676 56 Portocel Brasil 7 309 884 7 008 621 6 139 341 7 645 428 57 Itajai (inc.Navegantes) Brasil 7 309 884 7 008 621 6 139 341 7 645 428 58 Puerto Quetzal Guatemala 7 525 810 6 979 370 6 718 880 7 577 800 59 Caucedo República Dominicana 6 771 641 6 802 305 7 474 103 60 Dos Bocas México 982 014 9 619 265 7 251 195 61 Rio de Janeiro Brasil 17 927 936 19 803 582 6 769 028 6 946 636 62 <t< th=""><th>50</th><td>Alumar</td><td>Brasil</td><td></td><td></td><td>5 620 180</td><td>9 128 610</td></t<>	50	Alumar	Brasil			5 620 180	9 128 610
53 Tampico México 9 228 081 8 830 598 8 498 049 54 Puerto Cortes Honduras 8 010 506 8 527 276 7 366 269 8 383 226 55 Punta Venado México 8 772 992 10 218 573 8 215 676 56 Portocel Brasil 8 354 553 8 149 826 57 Itajai (inc.Navegantes) Brasil 7 309 884 7 008 621 6 139 341 7 645 428 58 Puerto Quetzal Guatemala 7 525 810 6 979 370 6 718 880 7 577 800 59 Caucedo República Dominicana 6 771 641 6 802 305 7 474 103 60 Dos Bocas México 982 014 9 619 265 7 251 195 61 Rio de Janeiro Brasil 17 927 936 19 803 582 6 769 028 6 946 636 62 Manaus Brasil 11 800 925 16 265 750 5 736 679 6 571 578 63 Vitória Brasil 8 105 6	51	Suape	Brasil	6 488 223	8 655 042	7 520 799	8 989 653
54 Puerto Cortes Honduras 8 010 506 8 527 276 7 366 269 8 383 226 55 Punta Venado México 8 772 992 10 218 573 8 215 676 56 Portocel Brasil 8 354 553 8 149 826 57 Itajai (inc.Navegantes) Brasil 7 309 884 7 008 621 6 139 341 7 645 428 58 Puerto Quetzal Guatemala 7 525 810 6 979 370 6 718 880 7 577 800 59 Caucedo República Dominicana 6 771 641 6 802 305 7 474 103 60 Dos Bocas México 982 014 9 619 265 7 251 195 61 Rio de Janeiro Brasil 17 927 936 19 803 582 6 769 028 6 946 636 62 Manaus Brasil 11 800 925 16 265 750 5 736 679 6 571 578 63 Vitória Brasil 8 105 619 7 222 270 4 768 782 6 568 084 64 Barranquilla Colombia	52	San Nicolas-PE	Perú	8 145 807	8 013 969	7 302 720	8 683 309
55 Punta Venado México 8 772 992 10 218 573 8 215 676 56 Portocel Brasil 7 309 884 7 008 621 6 139 341 7 645 428 57 Itajai (inc.Navegantes) Brasil 7 309 884 7 008 621 6 139 341 7 645 428 58 Puerto Quetzal Guatemala 7 525 810 6 979 370 6 718 880 7 577 800 59 Caucedo República Dominicana 6 771 641 6 802 305 7 474 103 60 Dos Bocas México 982 014 9 619 265 7 251 195 61 Rio de Janeiro Brasil 17 927 936 19 803 582 6 769 028 6 946 636 62 Manaus Brasil 11 800 925 16 265 750 5 736 679 6 571 578 63 Vitória Brasil 8 105 619 7 222 270 4 768 782 6 568 084 64 Barranquilla Colombia 6 452 025 6 262 240 5 284 558 6 389 272	53	Tampico	México	9 228 081	8 830 598	8 498 049	
56 Portocel Brasil 8 354 553 8 149 826 57 Itajai (inc.Navegantes) Brasil 7 309 884 7 008 621 6 139 341 7 645 428 58 Puerto Quetzal Guatemala 7 525 810 6 979 370 6 718 880 7 577 800 59 Caucedo República Dominicana 6 771 641 6 802 305 7 474 103 60 Dos Bocas México 982 014 9 619 265 7 251 195 61 Rio de Janeiro Brasil 17 927 936 19 803 582 6 769 028 6 946 636 62 Manaus Brasil 11 800 925 16 265 750 5 736 679 6 571 578 63 Vitória Brasil 8 105 619 7 222 270 4 768 782 6 568 084 64 Barranquilla Colombia 6 452 025 6 262 240 5 284 558 6 389 272	54	Puerto Cortes	Honduras	8 010 506	8 527 276	7 366 269	8 383 226
57 Itajai (inc.Navegantes) Brasil 7 309 884 7 008 621 6 139 341 7 645 428 58 Puerto Quetzal Guatemala 7 525 810 6 979 370 6 718 880 7 577 800 59 Caucedo República Dominicana 6 771 641 6 802 305 7 474 103 60 Dos Bocas México 982 014 9 619 265 7 251 195 61 Rio de Janeiro Brasil 17 927 936 19 803 582 6 769 028 6 946 636 62 Manaus Brasil 11 800 925 16 265 750 5 736 679 6 571 578 63 Vitória Brasil 8 105 619 7 222 270 4 768 782 6 568 084 64 Barranquilla Colombia 6 452 025 6 262 240 5 284 558 6 389 272	55	Punta Venado	México	8 772 992	10 218 573	8 215 676	
58 Puerto Quetzal Guatemala 7 525 810 6 979 370 6 718 880 7 577 800 59 Caucedo República Dominicana 6 771 641 6 802 305 7 474 103 60 Dos Bocas México 982 014 9 619 265 7 251 195 61 Rio de Janeiro Brasil 17 927 936 19 803 582 6 769 028 6 946 636 62 Manaus Brasil 11 800 925 16 265 750 5 736 679 6 571 578 63 Vitória Brasil 8 105 619 7 222 270 4 768 782 6 568 084 64 Barranquilla Colombia 6 452 025 6 262 240 5 284 558 6 389 272	56	Portocel	Brasil			8 354 553	8 149 826
59 Caucedo República Dominicana 6 771 641 6 802 305 7 474 103 60 Dos Bocas México 982 014 9 619 265 7 251 195 61 Rio de Janeiro Brasil 17 927 936 19 803 582 6 769 028 6 946 636 62 Manaus Brasil 11 800 925 16 265 750 5 736 679 6 571 578 63 Vitória Brasil 8 105 619 7 222 270 4 768 782 6 568 084 64 Barranquilla Colombia 6 452 025 6 262 240 5 284 558 6 389 272	57	Itajai (inc.Navegantes)	Brasil	7 309 884	7 008 621	6 139 341	7 645 428
Dominicana 60 Dos Bocas México 982 014 9 619 265 7 251 195 61 Rio de Janeiro Brasil 17 927 936 19 803 582 6 769 028 6 946 636 62 Manaus Brasil 11 800 925 16 265 750 5 736 679 6 571 578 63 Vitória Brasil 8 105 619 7 222 270 4 768 782 6 568 084 64 Barranquilla Colombia 6 452 025 6 262 240 5 284 558 6 389 272	58	Puerto Quetzal	Guatemala	7 525 810	6 979 370	6 718 880	7 577 800
61 Rio de Janeiro Brasil 17 927 936 19 803 582 6 769 028 6 946 636 62 Manaus Brasil 11 800 925 16 265 750 5 736 679 6 571 578 63 Vitória Brasil 8 105 619 7 222 270 4 768 782 6 568 084 64 Barranquilla Colombia 6 452 025 6 262 240 5 284 558 6 389 272	59	Caucedo		6 771 641	6 802 305	7 474 103	
62 Manaus Brasil 11 800 925 16 265 750 5 736 679 6 571 578 63 Vitória Brasil 8 105 619 7 222 270 4 768 782 6 568 084 64 Barranquilla Colombia 6 452 025 6 262 240 5 284 558 6 389 272	60	Dos Bocas	México	982 014	9 619 265	7 251 195	
63 Vitória Brasil 8 105 619 7 222 270 4 768 782 6 568 084 64 Barranquilla Colombia 6 452 025 6 262 240 5 284 558 6 389 272	61	Rio de Janeiro	Brasil	17 927 936	19 803 582	6 769 028	6 946 636
64 Barranquilla Colombia 6 452 025 6 262 240 5 284 558 6 389 272	62	Manaus	Brasil	11 800 925	16 265 750	5 736 679	6 571 578
1	63	Vitória	Brasil	8 105 619	7 222 270	4 768 782	6 568 084
	64	*	Colombia	6 452 025	6 262 240	5 284 558	6 389 272

	América Latina y	el Caribe: Movimi	ento Portuario de (toneladas totales	(2007-2009)	
	Puerto	País	TON 2007	TON 2008	TON 2009	TON 2010
65	Pisco (inc. San Martin)	Perú	2 426 961	3 184 581	3 978 067	6 156 398
66	Bianchini	Brasil			3 617 922	6 069 247
67	Guerrero Negro	México	6 174 503	7 331 765	5 989 610	
68	Aratu	Brasil	30 358 587	31 601 037	5 261 077	5 633 296
69	Port Rhoades	Jamaica	5 408 548	5 415 948	3 886 136	5 283 624
70	San Vicente (SVTI)	Chile	5 241 345	7 061 027	5 907 688	5 281 254
71	Talara	Perú	3 994 330	3 978 164	3 958 309	5 159 332
72	Lirquen	Chile	5 530 282	5 382 934	4 991 820	4 926 838
73	Topolobampo	México	5 074 465	4 779 404	4 812 292	
74	Santo Tomas de Castilla	Guatemala	4 714 750	4 676 801	4 368 840	4 745 490
75	Usiminas	Brasil			3 049 807	4 659 622
76	Patillos	Chile	2 194 355	4 014 246	4 608 345	
77	Matarani	Perú	3 623 623	3 888 606	3 716 394	4 485 252
78	Fortaleza	Brasil	3 278 298	3 755 512	3 451 309	4 349 022
79	La Plata	Argentina	5 252 830	5 066 183	4 244 040	
80	Hermasa Graneleiro	Brasil			4 940 026	4 196 378
81	Ventanas	Chile	4 383 123	4 651 564	3 618 266	4 110 834
82	Amapa	Brasil			2 319 098	4 101 121
83	Guaymas	México	3 724 331	4 049 372	3 822 563	
84	Acajutla	El Salvador	4 372 380	4 435 557	3 383 419	3 706 122
85	Progreso	México	2 351 492	4 523 223	3 572 123	
86	Pecem	Brasil	2 205 361	1 448 417	2 013 575	3 565 476
87	Salvador	Brasil	3 090 307	5 837 259	3 154 270	3 436 737
88	Caldera	Costa Rica	3 324 004	3 464 534	2 889 570	3 326 795
89	Carmópolis	Brasil			2 598 264	3 310 925
90	Mazatlán	México	3 233 345	3 370 294	3 269 455	
91	Tocopilla	Chile	2 972 001	2 855 361	3 190 083	
92	Superterminais	Brasil				3 189 629
93	Belém	Brasil	21 174 322	21 454 312	2 879 901	3 186 074
94	Chiriqui Grande Terminal	Panamá	3 521 911	2 619 718	3 159 194	
95	Areia Branca	Brasil	3 433 256	3 745 876	3 594 410	3 133 908
96	Boyóvar	Perú	3 845 958	3 101 274	2 175 074	3 114 363
97	Quequen	Argentina	4 427 648	4 528 516	3 083 032	
98	Jarry	Guadalupe	3 288 422	3 582 054	3 010 669	
99	Maceio	Brasil	4 120 275	4 779 581	2 780 328	2 983 747
100	Mejillones	Chile	4 581 107	5 323 386	2 921 748	

Fuente: Comisión Económica para América Latina y el Caribe (CEPAL) – Unidad de Servicios de Infraestructura.

3.13 FAO

En la dirección (http://www.fao.org/corp/statistics/es/) se recogen estadísticas de producción agrícola y maderera por países identificando el Valor Añadido Bruto (VAB) de ambos sectores.

3.14 Organización de las Naciones Unidas (ONU)

En la página (http://unstats.un.org/unsd/default.htm) se ofrece un amplio conjunto de recursos GIS con los que se pueden alimentar modelos a escala mundial. En concreto se ha extraído, para el análisis de vulnerabilidad económica, información sobre explotación agrícola y maderera, y sobre indicadores de accesibilidad dados por distancia a núcleos de población de cierta entidad –figura 2.36–.

0 435 870 1340 2.610 3.480

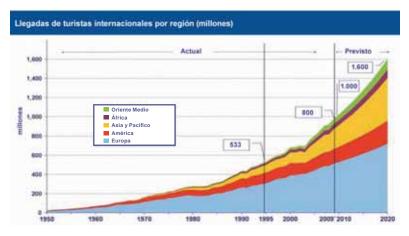
FIGURA 2.36
TIEMPO DE ACCESO A CIUDADES CON MÁS DE 50.000 HABITANTES

Fuente: United Nations Statistics Division (http://unstats.un.org/unsd/default.htm).

3.15 Datos sobre arrecifes de coral

Los datos consultados sobre arrecifes provienen del World Resources Institute pudiéndose descargar de la siguiente web (http://www.wri.org/project/reefs-at-risk).

FIGURA 2.37 LOCALIZACIÓN DE LOS ARRECIFES DE CORAL EN AMÉRICA LATINA Y EL CARIBE



Fuente: World Resources Institute (WRI).

3.16 Datos de turismo de la Organización Internacional del Turismo (WTO)

Se han obtenido datos sobre llegadas (véase cuadro 2.22.) e ingresos de turismo internacional de la Organización Internacional del Turismo (http://unwto.org/) que proporciona datos para 2006 sobre los distintos países en el estudio. Debido a la importancia turística de ciertos países de la región esta información se ha tenido en cuenta a la hora de determinar el riesgo por erosión de las playas considerando la vulnerabilidad de las zonas que reciben turismo ante tal situación. Además, considerando la futura expansión del turismo en la región, según la misma organización –figura 2.38–, se considera que se debe incluir esta información en el análisis de la vulnerabilidad y del riesgo asociado.

FIGURA 2.38
PREVISIONES DE CRECIMIENTO DEL TURISMO INTERNACIONAL

Fuente: Organización Internacional del Turismo-WTO (http://unwto.org/).

CUADRO 2.22 RESUMEN DE LAS LLEGADAS DE TURISTAS A AMÉRICA

	Llegada de turistas		ta de mer n la regió		Camb	io (%)	Crecimi	ento (%)
	2005	1990	2000	2005	2004/2003	2005/2003	2004/2003	2005/2003
Continente americano	133 546	100	100	100	11,1	6,2	3,3	0,8
Norte América	89 929	77,3	71,4	67,3	10,9	4,9	2,5	-0,3
Canadá	18 612	16,4	15,3	13,9	9,2	-2,2	2,5	-1,0
México	21 915	18,5	16,1	16,4	10,5	6,3	1,9	1,2
Estados Unidos	49 402	42,4	40,0	37,0	11,8	7,2	2,7	-0,7
Caribe	18 861	12,3	13,3	14,1	5,9	4,3	4,1	2,0
Anguilla	62	0,0	0,0	0,0	15,1	15,0	3,6	7,1
Antigua, Barbuda	245	0,2	0,2	0,2	9,6	0,0	0,0	3,5
Aruba	733	0,5	0,6	0,5	13,4	0,6	5,2	0,3
Bahamas	1 608	1,7	1,2	1,2	3,4	3,0	-0,1	0,8
Barbados	548	0,5	0,4	0,4	3,8	-0,7	2,4	0,1
Bermuda	270	0,5	0,3	0,2	5,9	-0,7	-2,7	-4,1
Bonaire	63	0,0	0,0	0,0	1,6	-0,9	3,3	4,2
Br. Virgin	337	0,2	0,2	0,3	-4,2	10,7	5,4	4,4
Caimán	168	0,3	0,3	0,1	-11,4	-35,4	3,4	-13,9
Cuba	2 261	0,4	1,4	1,7	9,2	12,1	18,2	5,4
Curação	222	0,2	0,1	0,2	0,9	-0,6	-1,4	3,1
Dominica	79	0,0	0,1	0,1	8,5	-0,5	4,5	2,4
Grenada	99	0,1	0,1	0,1	-6,0	-26,4	5,4	-5,2
Guadalupe	-	0,4	0,5	-	3,9	-	6,2	-
Haití	-	0,2	0,1	-	-29,4	-	-0,3	-
Jamaica	1 479	1,1	1,0	1,1	4,8	4,5	2,9	2,3
Martinica	484	0,3	0,4	0,4	3,9	2,8	6,4	-1,7
Montserrat	10	0,0	0,0	0,0	13,7	1,3	-2,3	-1,3
Puerto Rico	3 686	2,8	2,6	2,8	9,3	4,1	2,7	2,0
República Dominicana	3 691	1,4	2,3	2,8	5,1	7,0	8,6	4,4
Saba	11	0,0	0,0	7,3	3,9	-	-	4,7
Santa Lucia	318	0,2	0,2	0,2	7,8	6,5	6,7	3,3
St.Eustatius	10	0,0	0,0	5,8	-6,3	-	-	2,6
St.Kitts y Nevis	127	0,1	0,1	0,1	29,7	7,6	0,0	11,7
St.Maarten	462	0,6	0,3	0,3	11,1	-2,7	-2,3	1,4
San Vicente y las Granadinas	96	0,1	0,1	0,1	10,4	10,7	3,1	5,6

	Llegada de turistas		ta de mer n la regió		Camb	io (%)	Crecimi	ento (%)
	2005	1990	2000	2005	2004/2003	2005/2003	2004/2003	2005/2003
Trinidad	463	0,2	0,3	0,3	8,2	4,6	7,4	3,0
Turcas, Caicos	-	0,1	0,1		5,8		12,0	
Islas Vírgenes de los Estados Unidos	575	0,5	0,4	0,4	1,1	5,7	1,7	1,0
América Central	6 549	2,1	3,4	4,9	15,6	15,7	8,4	8,5
Belice	236	0,2	0,2	0,2	4,7	2,4	-0,1	3,8
Costa Rica	1 679	0,5	0,8	1,3	17,3	15,6	9,6	9,1
El Salvador	1 154	0,2	0,6	0,9	12,7	19,5	15,1	7,7
Guatemala	1 316	0,5	0,6	1,0	34,2	11,4	5,0	9,8
Honduras	749	0,3	0,4	0,6	-2,6	25,9	5,0	9,7
Nicaragua	712	0,1	0,4	0,5	16,9	15,9	16,4	8,0
Panamá	702	0,2	0,4	0,5	9,8	13,0	8,5	7,7
América del Sur	18 207	8,3	11,9	13,6	17,2	12,2	7,0	3,6
Argentina	3 895	2,1	2,3	2,9	15,4	12,7	4,2	6,0
Bolivia	423	0,3	0,2	0,3	9,3	4,5	2,3	5,8
Brasil	5 358	1,2	4,1	4,0	16,0	11,8	17,2	0,2
Chile	2 027	1,0	1,4	1,5	10,6	13,6	6,3	3,1
Colombia	933	0,9	0,4	0,7	26,6	18,0	-3,7	10,9
Ecuador	861	0,4	0,5	0,6	7,6	5,1	5,6	6,5
Guyana Francesa	-	-	-	-	-	-	-	-
Guyana	117	0,1	0,1	0,1	20,9	-4,4	5,1	2,1
Paraguay	341	0,3	0,2	0,3	15,3	10,2	0,3	3,4
Perú	1 486	0,3	0,6	1,1	19,4	16,4	10,1	12,4
Suriname	160	0,0	0,0	0,1	68,1	16,1	2,2	22,9
Uruguay	1 808	1,5	1,4	23,7	2,9	-	-	-1,7
Venezuela (República Bolivariana de)	706	0,6	0,4	0,5	44,3	45,2	-1,1	8,5

Fuente: Organización Internacional del Turismo-WTO (http://unwto.org/).

3.17 Datos de carreteras y ferrocarriles (DCW)

Los mapas de redes de carreteras y ferrocarriles se han obtenido de la base de datos: Digital Chart of the World (DCW). Este mapa digital terrestre es una base de datos GIS global con datos actualizados hasta 1992 y que está disponible de forma gratuita desde 2006. La información se encuentra dividida, en general, en 2.094 unidades de 5x5 grados a escala global.

La fuente de información principal de la base de datos es el mapa de la Defense Mapping Agency's (DMA) Operational Navigation Chart (ONC), a escala 1:1.000.000, producida por los gobiernos de Estados Unidos, Canadá, Australia y Reino Unido. Estos mapas fueron diseñados para satisfacer las necesidades de pilotos y tripulación aérea en rutas de navegación de latitudes bajas y medias y para planificaciones militares, servicios de inteligencia y otras necesidades.

3.18 Resumen de los datos utilizados en la evaluación de la vulnerabilidad

A continuación se resume en forma de cuadro las bases de datos existentes utilizadas para definir la vulnerabilidad, distinguiendo entre socioeconómica y ecológica, en las costas de ALyC.

CUADRO 2.23
RESUMEN DE BASES DE DATOS UTILIZADAS PARA EVALUAR
LA VULNERABILIDAD

Tipos de Datos	Vulnerabilidad/Exposición	Fuente
Usos del suelo	Socioeconómica	Land Cover
Tipos de suelo	Socioeconómica	Glob Cover
Áreas protegidas	Ecológica	WDPA y UNEP
Amenaza de los ecosistemas	Ecológica	WWF
Densidad de población	Socioeconómica	CIESIN
PIB	Socioeconómica	CIESIN
Estadísticas nacionales	Socioeconómica	CEPAL-STAT
Datos de turismo	Socioeconómica	WTO
Ranking de puertos en ALyC	Socioeconómica	CEPAL-Unidad de infraestructura
Producción agrícola y maderera	Socioeconómica	FAO
Carreteras	Socioeconómica	DCW
Ferrocarriles	Socioeconómica	DCW
Explotación agrícola y maderera	Socioeconómica	ONU
Accesibilidad a núcleos de población	Socioeconómica	ONU
Arrecifes de coral	Ecológica y Socioeconómica	WRI
Información sobre distintos aspectos de la configuración de la costa	Exposición	
Tipología de playas	Exposición	Elaboración propia IH Cantabria a
Ciudades costeras	Exposición	partir de imágenes de satélite
Obras marítimas	Exposición /Socioeconómica	
Desembocaduras	Exposición	

Fuente: Elaboración propia.

4. Análisis de la vulnerabilidad y la exposición en América Latina y el Caribe

En este apartado se estudian para los distintos países diversas variables que configuran la vulnerabilidad de las costas frente a impactos costeros.

CUADRO 2.24

RESUMEN DE VARIABLES CONTEMPLADAS EN EL ANÁLISIS DE VULNERABILIDAD DE LA COSTA DE AMÉRICA LATINA Y EL CARIBE FRENTE A CAMBIO CLIMÁTICO, RESOLUCIÓN Y ESCALAS DE LOS RESULTADOS PRESENTADOS

Variable analizada	Resolución	Escala de los resultados
Área de cada ecosistema	0-10 m / 5 km	País y unidad de estudio
Índice de vulnerabilidad ecológica (V_{ECO})	0-10 m / 5 km	País y unidad de estudio
Valoración económica de los ecosistemas	0-10 m / 5 km	País y unidad de estudio
Población afectada	0-10 m / 5 km	País y unidad de estudio
Área afectada	0-10 m / 5 km	País y unidad de estudio
Longitud de playa	5 km	País y unidad de estudio
Longitud de ciudad en la costa	5 km	País y unidad de estudio
Longitud coincidente de playa y ciudad	5 km	País y unidad de estudio
Longitud de desembocadura	5 km	País y unidad de estudio
Longitud de diques de abrigo	5 km	País y unidad de estudio
Longitud de tipos de playa	5 km	País y unidad de estudio
Número de tramos según tipos de playa	País	País
Número de puertos registrados	País	País
Área de cultivos	0-10 m / 5 km	País y unidad de estudio
Área de trama urbana	0-10 m / 5 km	País y unidad de estudio

Fuente: Elaboración propia.

4.1 Análisis por países

Para identificar cada país se ha utilizado el código ISO 3166/2 y las abreviaturas asociadas que se expresan en el cuadro 2.25.

CUADRO 2.25 RELACIÓN DE LOS PAÍSES ANALIZADOS, ABREVIATURAS Y CÓDIGOS ISO 3166/2

1 2	Antigua y Barbuda Argentina	ATG					
2	Argentina		28	23	Honduras	HND	340
		ARG	32	24	Jamaica	JAM	388
3	Bahamas	BHS	44	25	Martinica	MTQ	474
4	Barbados	BRB	52	26	México	MEX	484
5	Brasil	BRA	76	27	Montserrat	MSR	500
6	Belice	BLZ	84	28	Antillas Neerlandesas	ANT	530
7	Islas Vírgenes-Británicas	VGB	92	29	Aruba	ABW	533
8	Islas Caimán	CYM	136	30	Nicaragua	NIC	558
9	Chile	CHL	152	31	Panamá	PAN	591
10	Colombia	COL	170	32	Perú	PER	604
11	Costa Rica	CRI	188	33	Puerto Rico	PRI	630
12	Cuba	CUB	192	34	Saint Kitts y Nevis	KNA	659
13	Dominica	DMA	212	35	Anguilla	AIA	660
14	República Dominicana	DOM	214	36	Santa Lucía	LCA	662
15	El Ecuador	ECU	218	37	San Vicente y las Granadinas	VCT	670
16	El Salvador	SLV	222	38	Suriname	SUR	740
17	Guyana	GUF	254	39	Trinidad y Tabago	TTO	780
18	Grenada	GRD	308	40	Islas Turcas y Caicos	TCA	796
19	Guadalupe	GLP	312	41	Islas Vírgenes de los Estados Unidos	VIR	850
20	Guatemala	GTM	320	42	Uruguay	URY	858
21	Guyana	GUY	328	43	Venezuela (República Bolivariana de)	VEN	862
22	Haití	HTI	332				

Fuente: Organización Internacional para la Estandarización (ISO) (www.iso.org).

El cuadro 2.26 resume la superficie de tierra que abarcan las unidades de estudio en cada país, y la superficie entre 0 y 10 m, respectivamente, tanto en términos absolutos (km²) como en proporción relativa a la superficie del país. Esta medida representa el alcance de los análisis contemplados en el

estudio, puesto que da una medida de la proporción de terreno analizado por cada país. Para ciertos países la franja costera supone una gran parte de su territorio, mientras que para otros, pese a contar con más superficie de franja costera, en proporción al resto del territorio el peso relativo es menor.

CUADRO 2.26
RELACIÓN DE LOS PAÍSES CON ÁREA DE COSTA ESTUDIADA ENTRE LOS 0 Y 10 M,
ÁREA CUBIERTA POR LAS UNIDADES DE ESTUDIO, ÁREA TOTAL DEL PAÍS
Y PROPORCIONES DE TERRITORIO CORRESPONDIENTES

País	Código ISO	Área de la costa de 0 a 10 m (km²)	Área total del país (km²)	Costa 0-10m respecto al total del país (%)	Área cubierta por los polígonos (km²)	Polígonos de costa respecto al total del país (%)
ATG	28	144,749	536,889	27,0	458,241	85,4
ARG	32	13 772,343	2 781 010,000	0,5	65 170,423	2,3
BHS	44	9 885,179	12 494,700	79,1	11 106,684	88,9
BRB	52	14,467	446,296	3,2	353,423	79,2
BRA	76	42 221,265	8 472 270,000	0,5	123 542,498	1,5
BLZ	84	2 230,972	22 092,800	10,1	6 986,507	31,6
VGB	92	56,248	184,340	30,5	183,148	99,4
CYM	136	228,269	314,908	72,5	306,180	97,2
CHL	152	4 583,649	744 397,000	0,6	91 511,999	12,3
COL	170	6 938,955	1 135 170,000	0,6	37 676,457	3,3
CRI	188	1 302,437	51 077,700	2,5	16 672,286	32,6
CUB	192	17 032,664	109 717,000	15,5	54 280,676	49,5
DMA	212	7,306	769,987	0,9	681,327	88,5
DOM	214	1 992,209	48 466,500	4,1	18 444,512	38,1
ECU	218	3 010,806	255 312,000	1,2	22 234,670	8,7
SLV	222	898,224	20 569,900	4,4	5 627,572	27,4
GUF	254	1 733,414	83 593,100	2,1	7 115,828	8,5
GRD	308	9,518	352,294	2,7	288,413	81,9
GLP	312	141,613	1 651,990	8,6	1 422,846	86,1
GTM	320	1 619,971	109 019,000	1,5	6 893,953	6,3
GUY	328	4 597,747	210 795,000	2,2	7 978,688	3,8
HTI	332	1 015,684	27 261,100	3,7	16 959,909	62,2
HND	340	4 875,170	112 307,000	4,3	12 685,333	11,3
JAM	388	657,720	11 037,400	6,0	8 142,278	73,8
MTQ	474	76,306	1 183,770	6,4	1 010,319	85,3
MEX	484	47 062,769	1 956 870,000	2,4	167 115,826	8,5
MSR	500	2,786	112,558	2,5	112,558	100,0
ANT	530	147,089	788,635	18,7	698,042	88,5
ABW	533	35,065	199,582	17,6	199,582	100,0
						(===t:=='=)

País	Código ISO	Área de la costa de 0 a 10 m (km^2)	Área total del país (km²)	Costa 0-10m respecto al total del país (%)	Área cubierta por los polígonos (km²)	Polígonos de costa respecto al total del país (%)
NIC	558	4 668,714	128 106,000	3,6	15 056,088	11,8
PAN	591	2 666,287	74 623,100	3,6	34 825,977	46,7
PER	604	4 531,531	1 290 860,000	0,4	45 609,667	3,5
PRI	630	893,092	9 178,860	9,7	7 240,355	78,9
KNA	659	19,805	302,084	6,6	302,084	100,0
AIA	660	56,785	192,435	29,5	185,322	96,3
LCA	662	29,986	635,237	4,7	589,919	92,9
VCT	670	6,440	342,229	1,9	271,682	79,4
SUR	740	4 709,061	144 985,000	3,2	6 898,067	4,8
TTO	780	394,426	5 010,230	7,9	4 525,642	90,3
TCA	796	633,015	635,491	99,6	635,491	100,0
VIR	850	38,429	313,213	12,1	313,213	100,0
URY	858	1 920,347	177 862,000	1,1	10 577,714	5,9
VEN	862	5 684,930	910 859,000	0,6	36 858,151	4,0

Fuente: Elaboración propia a partir de datos STRM-90 y GADM.

Como se puede apreciar en el cuadro anterior, las regiones insulares son las que más territorio tienen analizado en el estudio (100% en muchos casos). Sin embargo, sólo en los casos de las Islas Caimán, las Islas Turcas y Caicos y las Bahamas, en torno al 80% del territorio se puede calificar como zonas costeras bajas (por debajo de 10 m). La vulnerabilidad de estas islas es especialmente sensible a los impactos derivados de las dinámicas costeras. En estos casos concretos es donde el análisis es de especial relevancia puesto que los resultados aportados por el estudio afectan al país completo, ya que la franja costera supone todo el territorio del país.

4.1.1 Superficie total afectada

En este apartado se resume parte de la información analizada en la evaluación de la vulnerabilidad de la costa por países y por cotas en su caso. Esta información se proporciona en forma de cuadros y gráficos (para los primeros 15 países de la clasificación) y ha sido obtenida por agregación desde las unidades de estudio de 5 kms a los países a que pertenecen. Del análisis de estos datos se puede realizar una comparación entre los distintos países para determinar cuáles tienen mayor población expuesta, superficie o infraestructuras comprometidas o cómo es la configuración de la costa en cada uno de ellos.

CUADRO 2.27
SUPERFICIE DE TERRENO ENTRE CADA COTA POR PAÍS
(Kilómetros cuadrados)

País	Cota 1	Cota 2	Cota 3	Cota 4	Cota 5	Cota 6	Cota 7	Cota 8	Cota 9	Cota 10
MEX	3 449,5	7 968,3	13 327,1	19 446,1	25 122,6	30 434,4	35 453,8	39 665,4	43 826,7	47 062,8
BRA	1 017,5	2 621,8	6 225,3	12 585,1	18 225,6	25 295,2	30 825,8	35 028,6	38 727,5	42 221,3
CUB	480,9	1 450,1	2 971,6	5 453,9	7 730,0	10 044,8	12 078,8	13 921,0	15 506,0	17 032,7
ARG	1 193,0	3 036,1	4 600,4	6 013,2	7 520,6	9 153,2	10 572,5	11 842,7	12 881,9	13 772,3
BHS	412,7	1 004,4	2 364,5	3 939,6	5 635,0	6 995,1	8 116,0	8 979,5	9 508,6	9 885,2
COL	392,0	916,9	1 600,8	2 787,2	3 459,6	4 308,3	5 004,9	5 670,9	6 295,5	6 939,0
VEN	450,8	872,2	1 408,7	2 121,6	2 882,6	3 412,9	3 985,8	4 483,9	5 196,4	5 684,9
HND	118,6	222,2	838,3	1 383,5	2 283,4	3 009,6	3 590,3	4 068,4	4 478,9	4 875,2
SUR	52,8	741,8	1 700,6	2 476,0	2 944,8	3 355,7	3 908,7	4 142,0	4 394,5	4 709,1
NIC	328,2	629,5	1 395,0	2 051,5	2 768,8	3 292,6	3 712,9	4 106,8	4 419,1	4 668,7
GUY	117,7	950,9	2 100,1	3 068,5	3 694,8	4 027,5	4 220,8	4 393,7	4 504,3	4 597,7
CHL	158,6	476,7	845,9	1 339,4	1 871,9	2 329,6	2 874,5	3 455,9	4 019,2	4 583,6
PER	1 258,1	1 656,2	2 041,5	2 566,4	2 988,2	3 370,3	3 696,3	3 994,1	4 275,3	4 531,5
ECU	218,4	506,5	825,1	1 160,6	1 501,6	1 813,7	2 134,2	2 422,2	2 731,0	3 010,8
PAN	117,8	189,8	332,0	664,9	933,7	1 221,6	1 582,8	1 918,7	2 280,5	2 666,3
BLZ	172,2	435,5	670,3	1 049,9	1 276,1	1 480,9	1 701,3	1 903,8	2 067,0	2 231,0
DOM	37,5	107,3	201,4	362,7	760,7	1 063,5	1 306,8	1 509,6	1 779,6	1 992,2
URY	81,2	400,3	546,9	660,3	823,4	956,3	1 135,5	1 315,2	1 472,3	1 920,3
GUF	119,7	175,6	243,6	324,6	391,5	956,5	1 177,7	1 319,5	1 494,0	1 733,4
GTM	1,4	4,3	15,4	51,7	262,9	434,6	744,6	1 057,9	1 331,6	1 620,0
CRI	20,4	47,7	96,3	149,7	240,3	364,3	597,2	884,5	1 103,0	1 302,4
HTI	9,7	35,0	120,4	255,8	405,6	546,5	683,4	806,3	914,7	1 015,7
SLV	2,9	7,6	18,1	41,4	132,9	286,7	517,6	659,0	792,6	898,2
PRI	45,2	161,5	269,4	382,2	486,1	580,4	663,1	743,3	812,7	893,1
JAM	55,0	92,3	142,9	220,3	324,4	404,2	474,5	538,5	601,7	657,7
TCA	3,3	14,8	103,3	273,3	395,1	465,6	535,0	579,6	610,7	633,0
TTO	1,6	4,5	40,4	63,6	117,8	158,8	201,6	245,4	339,3	394,4
CYM	4,6	6,8	12,3	21,3	50,7	122,9	166,6	197,0	215,9	228,3
ANT	1,3	26,1	36,4	50,0	61,4	84,8	101,9	116,3	132,1	147,1
ATG	3,0	9,1	16,7	33,6	51,3	71,9	96,4	117,0	133,5	144,7
GLP	2,2	8,7	16,8	31,5	49,3	68,8	86,8	102,3	127,7	141,6
MTQ	0,6	1,7	4,4	8,9	15,9	23,2	39,1	53,7	65,1	76,3
AIA	9,6	13,6	21,7	28,1	34,1	39,8	44,7	48,8	53,1	56,8
VGB	4,1	10,5	19,3	28,7	36,4	41,1	45,8	50,0	53,3	56,2
VIR	0,5	2,2	3,8	7,9	12,9	18,3	24,0	29,1	34,0	38,4
ABW	0,8	2,1	3,9	6,7	10,9	16,2	21,0	26,7	30,9	35,1

(conclusión)

País	Cota 1	Cota 2	Cota 3	Cota 4	Cota 5	Cota 6	Cota 7	Cota 8	Cota 9	Cota 10
LCA	0,3	0,8	1,9	3,7	6,0	10,2	15,1	20,5	24,6	30,0
KNA	0,5	1,5	3,3	6,1	9,7	12,1	14,1	16,2	18,0	19,8
BRB	0,1	0,2	0,4	0,8	1,6	3,4	5,5	8,4	11,3	14,5
GRD	0,1	0,4	0,7	1,2	1,9	3,0	4,5	6,1	7,9	9,5
DMA	0,2	0,4	0,9	1,4	2,3	3,1	4,0	5,1	6,0	7,3
VCT	0,1	0,4	0,8	1,4	2,2	3,0	3,9	4,8	5,5	6,4
MSR	0,1	0,4	0,7	0,9	1,2	1,6	1,9	2,3	2,6	2,8

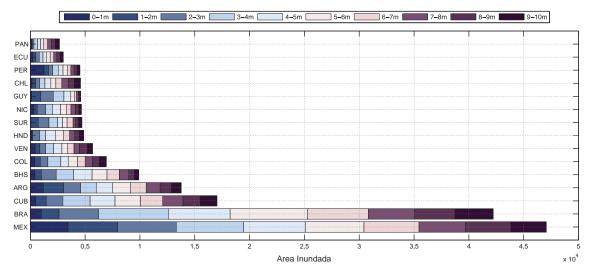
Fuente: Elaboración propia a partir de datos STRM-90 y GADM.

CUADRO 2.28
SUPERFICIE ENTRE CADA COTA RELATIVA A LA SUPERFICIE TOTAL
DE TERRENO DE CADA PAÍS

(Porcentajes)

País	Código país	Cota 1	Cota 2	Cota 3	Cota 4	Cota 5	Cota 6	Cota 7	Cota 8	Cota 9	Cota 10
TCA	796	0,51	2,34	16,31	43,18	62,41	73,55	84,51	91,57	96,48	100,00
BHS	44	3,30	8,04	18,92	31,53	45,10	55,98	64,96	71,87	76,10	79,11
CYM	136	1,48	2,16	3,92	6,77	16,10	39,03	52,90	62,54	68,57	72,49
VGB	92	2,25	5,72	10,48	15,57	19,74	22,27	24,87	27,12	28,94	30,51
AIA	660	4,98	7,07	11,27	14,61	17,73	20,66	23,20	25,37	27,60	29,51
ATG	28	0,57	1,69	3,12	6,25	9,56	13,40	17,95	21,80	24,86	26,96
ANT	530	0,16	3,30	4,61	6,33	7,78	10,75	12,93	14,75	16,74	18,65
ABW	533	0,39	1,06	1,95	3,38	5,48	8,09	10,52	13,37	15,48	17,57
CUB	192	0,44	1,32	2,71	4,97	7,05	9,16	11,01	12,69	14,13	15,52
VIR	850	0,17	0,71	1,23	2,52	4,10	5,85	7,66	9,28	10,87	12,27
BLZ	84	0,78	1,97	3,03	4,75	5,78	6,70	7,70	8,62	9,36	10,10
PRI	630	0,49	1,76	2,94	4,16	5,30	6,32	7,22	8,10	8,85	9,73
GLP	312	0,13	0,53	1,01	1,91	2,99	4,16	5,25	6,19	7,73	8,57
TTO	780	0,03	0,09	0,81	1,27	2,35	3,17	4,02	4,90	6,77	7,87
KNA	659	0,15	0,49	1,10	2,03	3,20	4,00	4,67	5,36	5,94	6,56
MTQ	474	0,05	0,14	0,37	0,75	1,34	1,96	3,30	4,54	5,50	6,45
JAM	388	0,50	0,84	1,29	2,00	2,94	3,66	4,30	4,88	5,45	5,96
LCA	662	0,04	0,12	0,30	0,59	0,95	1,61	2,38	3,23	3,87	4,72
SLV	222	0,01	0,04	0,09	0,20	0,65	1,39	2,52	3,20	3,85	4,37
HND	340	0,11	0,20	0,75	1,23	2,03	2,68	3,20	3,62	3,99	4,34
DOM	214	0,08	0,22	0,42	0,75	1,57	2,19	2,70	3,11	3,67	4,11
HTI	332	0,04	0,13	0,44	0,94	1,49	2,00	2,51	2,96	3,36	3,73

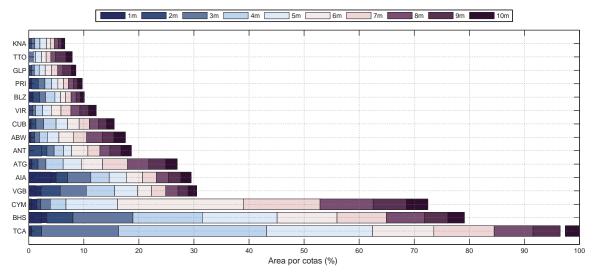
País	Código país	Cota 1	Cota 2	Cota 3	Cota 4	Cota 5	Cota 6	Cota 7	Cota 8	Cota 9	Cota 10
NIC	558	0,26	0,49	1,09	1,60	2,16	2,57	2,90	3,21	3,45	3,64
PAN	591	0,16	0,25	0,44	0,89	1,25	1,64	2,12	2,57	3,06	3,57
BRB	740	0,04	0,51	1,17	1,71	2,03	2,31	2,70	2,86	3,03	3,25
SUR	52	0,01	0,04	0,10	0,17	0,36	0,75	1,23	1,88	2,54	3,24
GRD	308	0,02	0,10	0,21	0,34	0,54	0,85	1,28	1,73	2,25	2,70
CRI	188	0,04	0,09	0,19	0,29	0,47	0,71	1,17	1,73	2,16	2,55
MSR	500	0,11	0,32	0,58	0,79	1,05	1,43	1,65	2,04	2,33	2,48
MEX	484	0,18	0,41	0,68	0,99	1,28	1,56	1,81	2,03	2,24	2,41
GUY	328	0,06	0,45	1,00	1,46	1,75	1,91	2,00	2,08	2,14	2,18
GUF	254	0,14	0,21	0,29	0,39	0,47	1,14	1,41	1,58	1,79	2,07
VCT	670	0,04	0,12	0,25	0,41	0,65	0,88	1,14	1,40	1,62	1,88
GTM	320	0,00	0,00	0,01	0,05	0,24	0,40	0,68	0,97	1,22	1,49
ECU	218	0,09	0,20	0,32	0,45	0,59	0,71	0,84	0,95	1,07	1,18
URY	858	0,05	0,23	0,31	0,37	0,46	0,54	0,64	0,74	0,83	1,08
DMA	212	0,02	0,06	0,11	0,19	0,30	0,41	0,52	0,66	0,78	0,95
VEN	862	0,05	0,10	0,15	0,23	0,32	0,37	0,44	0,49	0,57	0,62
CHL	152	0,02	0,06	0,11	0,18	0,25	0,31	0,39	0,46	0,54	0,62
COL	170	0,03	0,08	0,14	0,25	0,30	0,38	0,44	0,50	0,55	0,61
BRA	76	0,01	0,03	0,07	0,15	0,22	0,30	0,36	0,41	0,46	0,50
ARG	32	0,04	0,11	0,17	0,22	0,27	0,33	0,38	0,43	0,46	0,50
PER	604	0,10	0,13	0,16	0,20	0,23	0,26	0,29	0,31	0,33	0,35


Fuente: Elaboración propia a partir de datos STRM-90 y GADM.

Como se puede advertir de los resultados mostrados en el cuadro 2.28, los países: Islas Turcas y Caicos, las Bahamas y las Islas Caimán tienen más de un 70% de su territorio por debajo de la cota 10, lo que las hace especialmente expuestas a los impactos en las costas.

Según se realice el análisis en magnitud (km²) de la superficie o en proporción al territorio del país la clasificación de exposición de los países es distinta (cuadro 2.27 y cuadro 2.28).

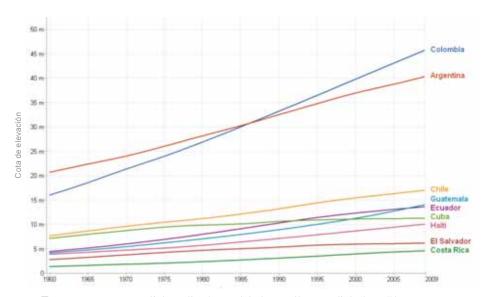
FIGURA 2.39
DISTRIBUCIÓN POR PAÍS DE LA SUPERFICIE ENTRE LAS COTAS 0 Y 10 M
EN AMÉRICA LATINA Y EL CARIBE


 (Km^2)

Fuente: Elaboración propia a partir de datos de GRUMP-CIESIN.

FIGURA 2.40 DISTRIBUCIÓN POR PAÍS DE LA SUPERFICIE ENTRE LAS COTAS 0 Y 10 M EN AMÉRICA LATINA Y EL CARIBE

(Porcentaje)


Fuente: Elaboración propia a partir de datos STRM-90 y GADM.

La primera conclusión de la superficie entre las cotas 0 y 10 m –figura 2.39 y cuadro 2.27– es que los países con mayor superficie en la franja costera son México y Brasil, que son precisamente los países con mayor longitud de costa. No obstante, destacan varias islas, entre ellas Cuba y Bahamas, que encabezan esta clasificación debido a que son zonas bajas que se verán especialmente afectadas por impactos en sus costas. Obsérvese también que la distribución entre cotas no es uniforme entre los distintos países. Como ejemplo, obsérvese el distinto comportamiento en los primeros 3 m.

4.1.2 Población afectada

La población analizada data del año 2000. Si bien estos datos están desactualizados, como se puede comprobar en la figura 2.41 para diversos países, sí que reproducen la distribución espacial de la población (resolución de 1 km) y son adecuados para realizar un diagnóstico de la vulnerabilidad de la costa.

FIGURA 2.41
EVOLUCIÓN DE LA POBLACIÓN EN LAS ÚLTIMAS DÉCADAS
EN VARIOS PAÍSES DE AMÉRICA LATINA Y EL CARIBE

Fuente: Banco Mundial, Indicadores del desarrollo mundial (http://datos.bancomundial.org/indice/ios-indicadores-del-desarrollo-mundial).

Debido a la distinta resolución del modelo digital del terreno y de los datos de población, en la línea de costa (cota 0) se ha identificado población. Esta población ha sido considerada entre las cotas de 0 y 1 m en el resto del análisis. No obstante, se añaden estos valores en la tabla siguiente puesto que suponen una medida de la población más cercana a la línea del agua en las costas, y en el nivel más bajo posible (cota 0 de elevación) y por tanto de incidencia directa ante cualquier impacto por mínimo que fuere. Obsérvese que la diferencia con respecto a los valores dados en los sucesivos cuadros representa la población a cotas superiores.

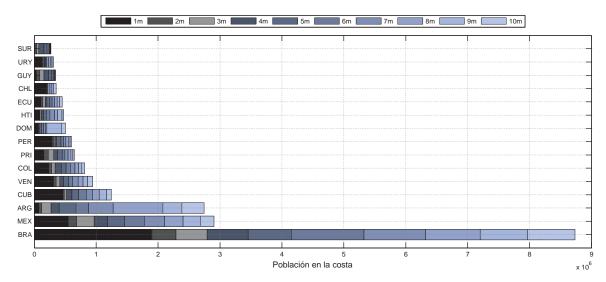
CUADRO 2.29
HABITANTES LOCALIZADOS INMEDIATAMENTE EN LA LÍNEA DE COSTA

País	Código ISO	Nº hab. en la Línea de Costa	País	Código ISO	Nº hab. en la Línea de Costa
BRA	76	1 732 634	NIC	558	16 448
MEX	484	459 483	BLZ	84	16 715
ARG	32	69 023	CRI	188	14 004
CUB	192	457 607	GLP	312	21 707
VEN	862	251 513	GUF	254	7 014
COL	170	223 799	MTQ	474	19 980
PRI	630	110 679	VIR	850	27 065
PER	604	273 234	AIA	660	18 627
DOM	214	55 566	CYM	136	7 111
HTI	332	87 102	ANT	530	8 551
ECU	218	69 411	ABW	533	13 927
CHL	152	181 886	ATG	28	7 413
GUY	328	30 087	BRB	52	11 889
URY	858	108 323	VGB	92	9 981
SUR	740	4 105	LCA	662	5 417
PAN	591	29 364	TCA	796	2 866
BHS	44	28 153	DMA	212	6 254
JAM	388	49 610	GRD	308	4 807
HND	340	15 267	KNA	659	3 561
SLV	222	24 780	VCT	670	3 722
тто	780	19 040	MSR	500	289
GTM	320	8 781			

Fuente: Elaboración propia a partir de datos GRUMP-CIESIN.

Analizando la población que reside entre las cotas 0 y 10 m —cuadro 2.30 y figura 2.43— se observa que Brasil es el país con mayor población en sus costas. También destaca la gran aglomeración en la primera cota que presenta Brasil, donde más del 20% de la población entre estos rangos se localiza entre los 0 y 1m, lo que lo convierte en un país especialmente sensible a los impactos por subida del nivel del mar e inundaciones costeras, en términos absolutos. En el caso de Barbados, más del 70% de la población en cotas bajas (por debajo de los 10 m) reside en el primer metro de elevación. Las islas del caribe, con la excepción de Cuba, se sitúan en posiciones más bajas en la clasificación por población que en la de superficie lo que indica una menor densidad de población en las primeras costas de la franja costera. Como ejemplo, obsérvese el caso de la República Dominicana, o las Bahamas, donde la mayor parte de la población reside a partir de la cota 5 m, mientras que en Brasil los resultados muestran mayor concentración en las cotas inferiores (más cerca de la costa). Probablemente, esta situación sea consecuencia de la experiencia frente a huracanes y sobreelevaciones del nivel del mar que son relativamente frecuentes en la región. No obstante, es esperable que con subidas adicionales del nivel del mar estos eventos extremos alcancen mayores cotas afectando, por tanto, a mayor población.

CUADRO 2.30
POBLACIÓN ENTRE CADA COTA. CLASIFICACIÓN POR PAÍS
(Número de personas)

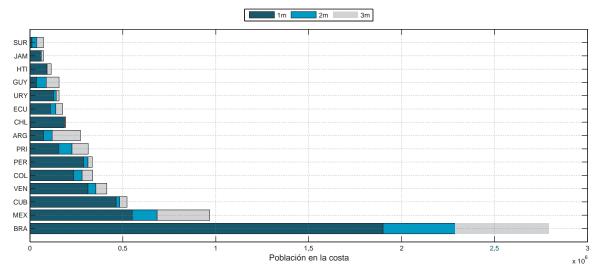

/	
Lanna	lusión)

País	Cota 1	Cota 2	Cota 3	Cota 4	Cota 5	Cota 6	Cota 7	Cota 8	Cota 9	Cota 10
LCA	5 417	5 566	5 566	5 848	6 310	7 674	8 674	9 142	9 678	10 665
TCA	2 547	2 598	3 101	4 050	5 131	6 342	7 903	8 480	9 251	9 630
DMA	6 254	6 254	6 254	6 254	6 254	6 298	6 298	6 658	7 051	7 082
GRD	4 986	4 986	4 986	4 986	5 098	5 098	5 394	5 583	5 583	6 132
KNA	3 571	3 571	3 720	3 736	4 416	4 472	4 797	4 855	5 037	5 264
VCT	3 722	3 722	3 722	4 000	4 063	4 380	4 380	4 693	4 693	5 008
MSR	289	289	301	301	301	301	301	334	334	334

Fuente: Elaboración propia a partir de datos GRUMP-CIESIN.

FIGURA 2.42 DISTRIBUCIÓN DE LA POBLACIÓN EN LOS PAÍSES DE AMÉRICA LATINA Y EL CARIBE ENTRE LAS COTAS 0 Y 10 M EN LA FRANJA COSTERA

(Número de habitantes)

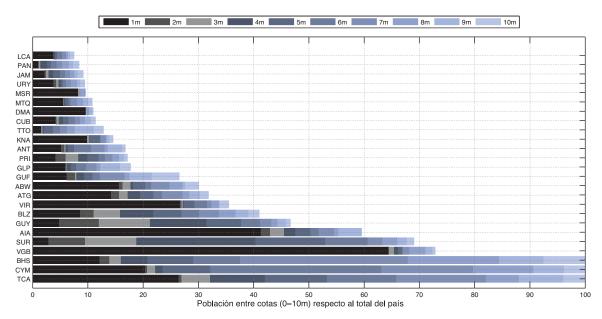

Fuente: Elaboración propia a partir de datos STRM-90 y GADM.

Nota: Resolución de 1 m en vertical.

Debido a que en una situación de ascenso del nivel del mar la zona inmediatamente más comprometida resulta ser la situada en las zonas más bajas, la figura 2.43 muestra la distribución en los 15 países con más población en el rango 0-3 m. Destaca sobremanera la concentración de la población respecto al resto de cotas del rango 0 y 1 m en Brasil, Cuba y Perú.

FIGURA 2.43
DISTRIBUCIÓN DE LA POBLACIÓN EN LA COSTA EN LOS PAÍSES
DE AMÉRICA LATINA Y EL CARIBE ENTRE LAS COTAS 0 Y 3 M

(Número de habitantes)



Fuente: Elaboración propia a partir de datos STRM-90 y GADM.

Nota: Resolución de 1m en vertical.

FIGURA 2.44 DISTRIBUCIÓN DE LA POBLACIÓN ENTRE LAS COTAS 0 Y 10 M RESPECTO DEL TOTAL DEL PAÍS

(Porcentaje)

Fuente: Elaboración propia a partir de datos STRM-90 y GADM.

Nota: Resultados en porcentaje respecto a la población total de cada país.

CUADRO 2.31 PORCENTAJE DE POBLACIÓN POR PAÍS ENTRE LAS COTAS 0 Y 10 M

País	Porcentaje	País	Porcentaje	País	Porcentaje	País	Porcentaje
TCA	100	GUF	26,5	JAM	9,2	HND	3,6
CYM	100	GLP	17,7	PAN	8,4	ECU	3,6
BHS	100	PRI	17,2	LCA	7,5	MEX	3,0
VGB	72,8	ANT	16,8	ARG	7,4	SLV	2,8
SUR	69,0	KNA	14,6	BRB	7,1	PER	2,4
AIA	59,6	TTO	12,8	GRD	6,8	CHL	2,4
GUY	46,7	CUB	11,4	DOM	6,1	NIC	2,0
BLZ	41,0	DMA	11,0	VCT	6,1	CRI	2,0
VIR	35,5	MTQ	10,8	HTI	6,0	COL	2,0
ATG	31,8	MSR	9,6	BRA	5,2	GTM	1,2
ABW	30,0	URY	9,4	VEN	3,9		

Fuente: Elaboración propia a partir de datos GRUMP-CIESIN.

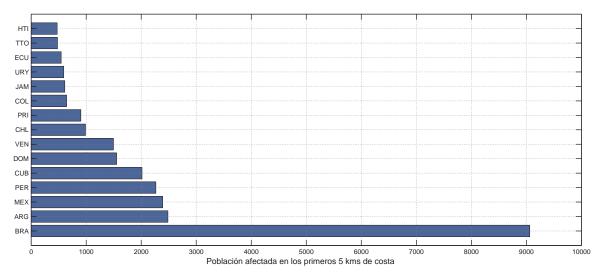
En el cuadro 2.32 se analiza la densidad de población en los primeros metros de costa a partir de los resultados anteriores. También se añade la posición en el ranking por población y superficie en los primeros 10 m de costa para obtener algunas conclusiones. Primero, se aprecia que muchas de las islas presentan grandes extensiones en cuanto a superficie con cotas bajas, debido a que su franja costera supone gran parte del territorio del país, como se vio previamente (p.ej. la superficie de las islas Bahamas estudiada supera la de Colombia), a la vista de la posición en la clasificación por población y superficie. Así, las islas Bahamas ocupan el 5º puesto en extensión (por debajo de 10 m) y el 17º en cuanto a población residente en los mismos niveles. Es destacable el caso de Cuba, 3º en población y 4º en extensión, que con menos superficie de territorio que otros países, es uno de los más expuestos.

La densidad de población es una variable importante para evaluar la concentración de la población en los primeros niveles de elevación. Así, destaca sobremanera el caso de Barbados y algunas otras islas. Además, merece la pena resaltar el caso de Puerto Rico (7º país en población y 24º en superficie de baja elevación) que pese a contar con poca superficie en los primeros 10 m, respecto a otros países, presenta una cantidad muy significante de personas residentes en esta franja.

CUADRO 2.32
DENSIDAD DE POBLACIÓN POR PAÍS EN ENTRE LOS 0 Y 10 M DE COSTA

PRP	País	PRS	0-10m (hab/km²)	PRP	País	PRS	0-10m (hab/km²)
1	BRA	2	206,8	23	NIC	10	21,2
2	MEX	1	61,7	24	BLZ	16	40,8
3	ARG	4	199,2	25	CRI	21	59,9
4	CUB	3	73,2	26	GLP	31	457,7
5	VEN	7	165,6	27	GUF	19	23
6	COL	6	117,5	28	MTQ	32	508,3
7	PRI	24	726,7	29	VIR	35	938,8
8	PER	13	133,3	30	AIA	33	628,9
9	DOM	17	253,5	31	CYM	28	144,1
10	HTI	22	467,8	32	ANT	29	188
11	ECU	14	149,7	33	ABW	36	765,2
12	CHL	12	77,5	34	ATG	30	128
13	GUY	11	75	35	BRB	39	1222,20
14	URY	18	163	36	VGB	34	200,9
15	SUR	9	57	37	LCA	37	355,5
16	PAN	15	88,7	38	TCA	26	15,2
17	BHS	5	23,5	39	DMA	41	970,1
18	JAM	25	351,1	40	GRD	40	645,5
19	HND	8	47,1	41	KNA	38	265,9
20	SLV	23	195,1	42	VCT	42	782,5
21	TTO	27	387,3	43	MSR	43	119,3
22	GTM	20	86,2				

Fuente: Elaboración propia a partir de datos GRUMP-CIESIN. Nota: PRP (Posición Ranking de Población), PRS(Posición Ranking de Superficie).


Para ciertos impactos en las costas, como la subida del nivel del mar, la relación de habitantes y superficie afectada por cotas puede ser la variable que defina la vulnerabilidad de unas zonas respecto a otras. Sin embargo, para procesos de erosión y zonas de influencia de los efectos de ciertos impactos, la distribución de la población en los primeros kilómetros de costa, independientemente de la cota, puede ser determinante para configurar la vulnerabilidad de las zonas costeras. Los datos geo-referenciados de población que se han utilizado en el estudio presentan una resolución de 1000 m, por lo que una dimensión por debajo de este límite no se puede contemplar. Además, para definir también un área de influencia indirecta de estos procesos erosivos, como la influencia en los alrededores de la erosión de una playa, en términos de seguridad pero sobre todo funcionalidad como recurso recreativo, este límite parece ser escaso. Por esta razón, se ha definido un buffer de 5 km desde la costa, tierra adentro, donde se han obtenido los resultados de la población residente. Los resultados, agregados por países, se muestran en la figura 2.45 y en el cuadro 2.33.

Para analizar la vulnerabilidad frente a la erosión de la costa no es suficiente con estudiar la superficie y la población en las cotas más bajas sino que resulta interesante obtener una medida de la población residente en los primeros km de costa. Debido a que la resolución de los datos de población es de 1 km, se han seleccionado los primeros 5 km de costa para estudiar la población residente. La figura 2.45 y el cuadro 2.33 muestran los resultados obtenidos.

Una de las primeras conclusiones que arroja este análisis es la distinta clasificación que se obtiene por países ya que a Brasil (país con mayor población también entre las cotas 0 y 10 m) le suceden Argentina y México, y después Perú supera a Cuba. Estos resultados muestran que existe gran aglomeración poblacional en los primeros kilómetros de costa, independientemente de la elevación.

FIGURA 2.45
DISTRIBUCIÓN DE LA POBLACIÓN POR PAÍS EN AMÉRICA LATINA
Y EL CARIBE EN LOS PRIMEROS 5 KM DE COSTA

(Miles de habitantes)

Fuente: Elaboración propia a partir de datos STRM-90 y GADM.

Como se puede observar en la comparación del cuadro 2.33 con los anteriores, las cifras son comparables, y en muchos casos superiores, al establecer un criterio de distancia a la costa en vez de una elevación límite (como normalmente se define la franja costera). En ocasiones este criterio puede representar de mejor manera el área de influencia de ciertos impactos en la costa, pese a que la cota de inundación no llegue hasta dicha elevación, tal es el caso de zonas altas como acantilados pero que se encuentran en el área de influencia y en la franja costera.

CUADRO 2.33
POBLACIÓN EN LOS PRIMEROS 5 KM DE COSTA. CLASIFICACIÓN POR PAÍS

Paí	ís	Nº hab. 5 km	Nº hab. País	Porcentaje	Pa	nís	Nº hab. 5 km	Nº hab. País	Porcentaje
ATG	28	43 827	58 233	75,3	HND	340	301 477	6 361 560	4, 7
ARG	32	2 485 797	36 960 524	6,7	JAM	388	611 488	2 523 460	24, 2
BHS	44	220 765	232 733	94,9	MTQ	474	208 565	359 707	58, 0
BRB	52	190 349	250 741	75,9	MEX	484	2 390 974	98 338 440	2, 4
BRA	76	9 062 220	166 894 270	5,4	MSR	500	3 480	3 480	100, 0
BLZ	84	58 828	221 991	26,5	ANT	530	123 069	165 014	74, 6
VGB	92	15 307	15 498	98,8	ABW	533	88 587	89 420	99, 1
CYM	136	30 814	32 889	93,7	NIC	558	152 677	5 035 530	3, 0
CHL	152	987 952	14 848 346	6,7	PAN	591	435 309	2 820 123	15, 4
COL	170	645 476	41 802 613	1,5	PER	604	2 266 700	24 973 177	9, 1
CRI	188	190 010	3 996 910	4,8	PRI	630	902 835	3 780 040	23, 9
CUB	192	2 015 426	10 977 350	18,4	KNA	659	33 988	36 158	94, 0
DMA	212	47 880	64 668	74,0	AIA	660	48 815	59 984	81, 4
DOM	214	1 554 450	8 256 853	18,8	LCA	662	95 051	142 586	66, 7
ECU	218	545 820	12 547 700	4,3	VCT	670	67 081	81 909	81, 9
SLV	222	264 707	6 231 300	4,2	SUR	740	40 804	389 001	10, 5
GUF	254	37 237	150 247	24,8	TTO	780	478 903	1 190 680	40, 2
GRD	308	73 040	89 550	81,6	TCA	796	6 581	9 630	68, 3
GLP	312	259 982	365 707	71,1	VIR	850	99 704	101 564	98, 2
GTM	320	159 133	11 316 210	1,4	URY	858	592 792	3 320 360	17, 9
GUY	328	183 217	738 892	24,8	VEN	862	1 496 851	23 855 260	6, 3
HTI	332	472 159	7 889 905	6,0					

Fuente: Elaboración propia a partir de datos GRUMP-CIESIN.

4.1.3 Infraestructuras afectadas (carreteras y ferrocarriles)

Para analizar la posible afección a las infraestructuras por países se ha analizado, entre cada cota, los tramos donde se ha identificado tanto carreteras como ferrocarriles, a partir de la información del Digital Chart of the World (DCW). En las carreteras se ha podido distinguir entre primarias y secundarias. La información agregada a la escala de países se recoge en el cuadro 2.34 (carreteras), cuadro 2.35, (carreteras primarias), cuadro 2.36 (carreteras secundarias) y el cuadro 2.37 (ferrocarriles) y se representa para los primeros 15 países de cada clasificación desde la figura 2.47 a la figura 2.50.

CUADRO 2.34
TRAMOS DE CARRETERAS AFECTADOS ENTRE CADA COTA.
CLASIFICACIÓN POR PAÍS.

(Nº de unidades de estudio)

País	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	TOTAL
MEX	341	76	84	66	78	68	78	57	68	54	970
BRA	187	45	80	96	79	87	75	54	47	47	797
CUB	64	11	18	33	37	41	35	38	26	34	337
BHS	109	23	25	34	31	40	34	18	6	8	328
ARG	56	40	27	18	26	42	31	33	22	16	311
VEN	58	22	30	25	12	15	15	9	10	13	209
PER	76	7	12	18	20	13	10	7	10	11	184
COL	97	11	17	10	11	17	5	5	3	1	177
CHL	30	2	4	9	8	11	12	16	18	15	125
HND	35	4	20	14	16	14	5	2	1	4	115
DOM	18	1	3	4	15	13	14	5	9	6	88
ECU	12	8	7	10	13	10	9	3	8	4	84
CRI	28	2	2	2	2	8	17	10	7	6	84
HTI	24	5	5	4	6	8	8	8	6	9	83
JAM	30	3	6	11	4	7	6	2	2	3	74
PRI	20	9	6	8	5	11	4	2	2	1	68
PAN	13	0	4	2	3	9	5	11	6	9	62
NIC	12	5	6	4	9	2	9	7	1	7	62
URY	23	3	3	1	5	4	5	2	5	8	59
SUR	1	14	23	12	0	0	0	0	1	0	51
GUY	15	18	12	5	0	0	0	0	0	0	50
GTM	12	1	2	2	4	3	4	5	4	5	42
SLV	6	0	1	1	5	8	7	2	4	2	36
GUF	3	0	1	2	1	8	6	4	3	7	35
TTO	4	1	2	3	2	1	3	5	4	4	29
GLP	13	1	3	0	3	3	1	1	1	0	26
ANT	1	7	1	1	4	2	0	0	2	2	20
VIR	11	0	0	0	1	1	3	0	1	1	18
BLZ	7	0	2	4	2	0	1	1	1	0	18
CYM	3	0	0	1	6	7	0	0	0	0	17
MTQ	5	0	0	0	2	0	4	3	1	1	16
ATG	2	0	2	1	3	1	1	0	1	1	12
LCA	0	1	1	1	1	1	3	1	1	0	10
DMA	9	0	0	0	0	0	0	0	0	0	9
VGB	6	0	0	0	0	0	0	1	0	0	7

País	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	TOTAL
TCA	4	0	1	1	0	0	0	0	0	0	6
AIA	5	0	1	0	0	0	0	0	0	0	6
ABW	1	2	0	0	0	0	0	3	0	0	6
KNA	1	0	0	0	0	0	0	1	0	1	3
GRD	0	0	0	0	0	0	0	1	1	0	2
BRB	0	0	0	0	1	0	0	0	0	1	2
VCT	0	0	0	0	0	0	0	0	0	1	1
MSR	1	0	0	0	0	0	0	0	0	0	1

Fuente: Elaboración propia a partir de datos de DCW (Digital Chart of the World).

CUADRO 2.35
TRAMOS DE CARRETERAS PRIMARIAS AFECTADOS ENTRE CADA COTA.
CLASIFICACIÓN POR PAÍS

(Nº de unidades de estudio)

País	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	TOTAL
MEX	146	28	32	15	32	24	34	21	24	22	378
BRA	69	23	26	37	29	25	38	20	18	25	310
CUB	5	0	0	0	1	0	0	0	1	3	10
BHS	0	0	0	0	0	0	0	0	0	0	0
ARG	9	1	1	1	0	4	2	7	7	1	33
VEN	29	13	20	15	7	5	9	6	4	8	116
PER	16	4	1	7	13	5	3	2	6	3	60
COL	6	2	3	2	2	6	0	2	1	0	24
CHL	6	0	1	0	3	3	0	4	4	5	26
HND	1	1	1	0	0	0	0	0	0	1	4
DOM	3	0	2	4	10	6	6	3	6	3	43
ECU	2	4	1	2	4	2	3	1	0	0	19
CRI	4	0	0	0	0	0	0	0	0	0	4
HTI	2	0	0	1	1	2	1	1	0	1	9
JAM	0	0	0	0	0	0	0	0	0	0	0
PRI	15	8	6	7	3	11	3	2	2	1	58
PAN	4	0	1	0	1	6	3	5	3	6	29
NIC	1	0	0	0	0	0	1	1	0	0	3
URY	0	0	0	0	0	0	0	0	0	0	0
SUR	0	0	0	0	0	0	0	0	0	0	0
GUY	0	0	0	0	0	0	0	0	0	0	0
GTM	2	0	0	1	0	2	1	2	1	0	9
SLV	0	0	1	1	1	2	3	0	4	1	13

(conclusión)

País	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	TOTAL
GUF	0	0	0	0	0	0	0	0	0	0	0
TTO	0	0	0	0	0	0	2	0	0	1	3
GLP	7	0	0	0	1	1	1	1	0	0	11
ANT	0	4	1	1	4	2	0	0	2	2	16
VIR	0	0	0	0	0	0	0	0	0	0	0
BLZ	0	0	0	2	0	0	0	0	0	0	2
CYM	0	0	0	0	0	0	0	0	0	0	0
MTQ	0	0	0	0	0	0	1	0	0	0	1
ATG	0	0	0	0	0	0	0	0	0	0	0
LCA	0	0	0	0	0	0	0	0	0	0	0
DMA	0	0	0	0	0	0	0	0	0	0	0
VGB	0	0	0	0	0	0	0	0	0	0	0
TCA	0	0	0	0	0	0	0	0	0	0	0
AIA	0	0	1	0	0	0	0	0	0	0	1
ABW	1	2	0	0	0	0	0	3	0	0	6
KNA	0	0	0	0	0	0	0	0	0	0	0
GRD	0	0	0	0	0	0	0	0	0	0	0
BRB	0	0	0	0	0	0	0	0	0	0	0
VCT	0	0	0	0	0	0	0	0	0	0	0
MSR	0	0	0	0	0	0	0	0	0	0	0

Fuente: Elaboración propia a partir de datos de DCW (Digital Chart of the World).

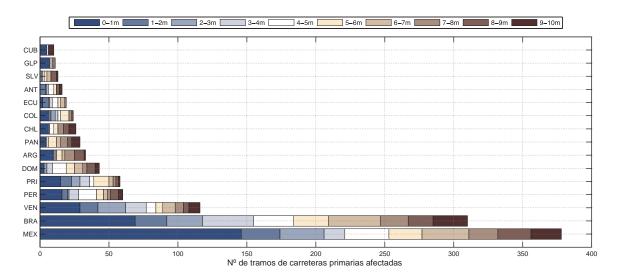
CUADRO 2.36
TRAMOS DE CARRETERAS SECUNDARIAS AFECTADOS ENTRE CADA COTA.
CLASIFICACIÓN POR PAÍS

(Nº de unidades de estudio)

País	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	TOTAL
MEX	195	48	52	51	46	44	44	36	44	32	592
BRA	118	22	54	59	50	62	37	34	29	22	487
CUB	59	11	18	33	36	41	35	38	25	31	327
BHS	109	23	25	34	31	40	34	18	6	8	328
ARG	47	39	26	17	26	38	29	26	15	15	278
VEN	29	9	10	10	5	10	6	3	6	5	93
PER	60	3	11	11	7	8	7	5	4	8	124
COL	91	9	14	8	9	11	5	3	2	1	153
CHL	24	2	3	9	5	8	12	12	14	10	99
HND	34	3	19	14	16	14	5	2	1	3	111

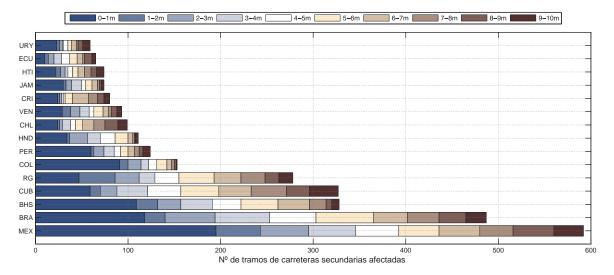
País	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	TOTAL
DOM	15	1	1	0	5	7	8	2	3	3	45
ECU	10	4	6	8	9	8	6	2	8	4	65
CRI	24	2	2	2	2	8	17	10	7	6	80
HTI	22	5	5	3	5	6	7	7	6	8	74
JAM	30	3	6	11	4	7	6	2	2	3	74
PRI	5	1	0	1	2	0	1	0	0	0	10
PAN	9	0	3	2	2	3	2	6	3	3	33
NIC	11	5	6	4	9	2	8	6	1	7	59
URY	23	3	3	1	5	4	5	2	5	8	59
SUR	1	14	23	12	0	0	0	0	1	0	51
GUY	15	18	12	5	0	0	0	0	0	0	50
GTM	10	1	2	1	4	1	3	3	3	5	33
SLV	6	0	0	0	4	6	4	2	0	1	23
GUF	3	0	1	2	1	8	6	4	3	7	35
TTO	4	1	2	3	2	1	1	5	4	3	26
GLP	6	1	3	0	2	2	0	0	1	0	15
ANT	1	3	0	0	0	0	0	0	0	0	4
VIR	11	0	0	0	1	1	3	0	1	1	18
BLZ	7	0	2	2	2	0	1	1	1	0	16
CYM	3	0	0	1	6	7	0	0	0	0	17
MTQ	5	0	0	0	2	0	3	3	1	1	15
ATG	2	0	2	1	3	1	1	0	1	1	12
LCA	0	1	1	1	1	1	3	1	1	0	10
DMA	9	0	0	0	0	0	0	0	0	0	9
VGB	6	0	0	0	0	0	0	1	0	0	7
TCA	4	0	1	1	0	0	0	0	0	0	6
AIA	5	0	0	0	0	0	0	0	0	0	5
ABW	0	0	0	0	0	0	0	0	0	0	0
KNA	1	0	0	0	0	0	0	1	0	1	3
GRD	0	0	0	0	0	0	0	1	1	0	2
BRB	0	0	0	0	1	0	0	0	0	1	2
VCT	0	0	0	0	0	0	0	0	0	1	1
MSR	1	0	0	0	0	0	0	0	0	0	1

Fuente: Elaboración propia a partir de datos de DCW (Digital Chart of the World).


FIGURA 2.46
TRAMOS DE CARRETERAS ENTRE LAS COTAS 0 Y 10 M EN AMÉRICA LATINA
Y EL CARIBE. CLASIFICACIÓN POR PAÍS

(Nº de unidades de estudio)

Fuente: Elaboración propia a partir de datos de DCW (Digital Chart of the World).


FIGURA 2.47
TRAMOS DE CARRETERAS PRIMARIAS ENTRE LAS COTAS 0 Y 10 M
EN AMÉRICA LATINA Y EL CARIBE. CLASIFICACIÓN POR PAÍS
(Nº de unidades de estudio)

Fuente: Elaboración propia a partir de datos de DCW (Digital Chart of the World).

FIGURA 2.48
TRAMOS DE CARRETERAS SECUNDARIAS ENTRE LAS COTAS 0 Y 10 M
EN AMÉRICA LATINA Y EL CARIBE. CLASIFICACIÓN POR PAÍS

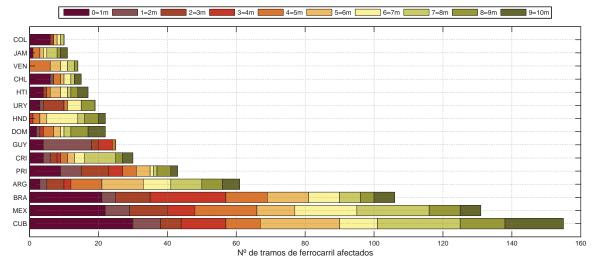
(Nº de unidades de estudio)

Fuente: Elaboración propia a partir de datos de DCW (Digital Chart of the World).

CUADRO 2.37
TRAMOS DE FERROCARRIL AFECTADOS ENTRE CADA COTA.
CLASIFICACIÓN POR PAÍS

(Nº de unidades de estudio)

País	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	TOTAL
CUB	30	8	6	13	10	23	11	24	13	17	155
MEX	22	7	11	8	18	11	18	21	9	6	131
BRA	21	4	10	22	12	12	9	6	4	6	106
ARG	3	2	5	2	9	12	8	9	6	5	61
PRI	9	6	8	4	4	4	1	1	4	2	43
CRI	4	2	2	1	2	2	3	9	2	3	30
GUY	4	14	2	4	1	0	0	0	0	0	25
HND	0	0	0	1	2	2	9	2	4	2	22
DOM	2	1	0	1	3	2	1	2	5	5	22
URY	3	1	6	0	1	0	4	0	4	0	19
HTI	4	0	1	0	1	3	2	1	2	3	17
CHL	6	1	0	0	2	1	2	1	0	2	15
VEN	0	0	0	0	6	3	2	2	1	0	14
JAM	1	0	0	0	2	1	1	3	1	2	11
PER	3	0	1	0	0	1	1	1	0	3	10
COL	6	0	1	0	0	1	1	1	0	0	10
TTO	0	0	0	0	3	1	2	2	0	0	8


(conclusión)

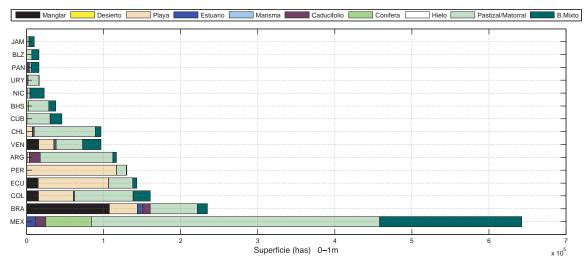
País	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	TOTAL
PAN	0	1	0	2	0	2	0	0	1	2	8
GTM	3	0	0	0	0	2	1	1	0	0	7
LCA	0	0	0	0	1	0	0	1	0	0	2
MTQ	0	0	0	0	0	0	2	0	0	0	2
ATG	0	0	0	0	0	0	2	0	0	0	2
SUR	0	0	0	1	0	0	0	0	0	0	1
VIR	0	0	0	0	0	0	0	0	0	0	0
TCA	0	0	0	0	0	0	0	0	0	0	0
VCT	0	0	0	0	0	0	0	0	0	0	0
AIA	0	0	0	0	0	0	0	0	0	0	0
KNA	0	0	0	0	0	0	0	0	0	0	0
NIC	0	0	0	0	0	0	0	0	0	0	0
ABW	0	0	0	0	0	0	0	0	0	0	0
ANT	0	0	0	0	0	0	0	0	0	0	0
MSR	0	0	0	0	0	0	0	0	0	0	0
GLP	0	0	0	0	0	0	0	0	0	0	0
GRD	0	0	0	0	0	0	0	0	0	0	0
GUF	0	0	0	0	0	0	0	0	0	0	0
SLV	0	0	0	0	0	0	0	0	0	0	0
ECU	0	0	0	0	0	0	0	0	0	0	0
DMA	0	0	0	0	0	0	0	0	0	0	0
CYM	0	0	0	0	0	0	0	0	0	0	0
VGB	0	0	0	0	0	0	0	0	0	0	0
BLZ	0	0	0	0	0	0	0	0	0	0	0
BRB	0	0	0	0	0	0	0	0	0	0	0
BHS	0	0	0	0	0	0	0	0	0	0	0

Fuente: Elaboración propia a partir de datos de DCW (Digital Chart of the World).

FIGURA 2.49
TRAMOS DE FERROCARRIL AFECTADOS ENTRE LAS COTAS 0 Y 10 M
EN AMÉRICA LATINA Y EL CARIBE. CLASIFICACIÓN POR PAÍS

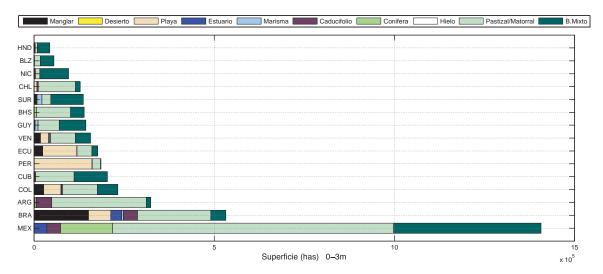
(Nº de unidades de estudio)

Fuente: Elaboración propia a partir de datos de DCW (Digital Chart of the World).


De la información registrada sobre los tramos de carreteras y ferrocarriles entre cada cota se puede obtener varias conclusiones inmediatas. En primer lugar, las costas de México, Brasil, Cuba y Bahamas, por este orden, son las más vulnerables debido a la disposición de estas infraestructuras en zonas bajas cercanas a las costas. Respecto a las carreteras, la mayoría clasificadas como secundarias, están situadas entre las cotas 0 y 1 m (alrededor del 30% de los tramos en México están en este rango de elevaciones), lo que las hace especialmente vulnerables ante la subida del nivel del mar o eventos de inundación costera. En cuanto a la red de ferrocarriles, la mayoría de tramos se encuentra a partir de los 3 m de elevación (en torno al 20% en México se encuentra entre 0 y 1 m), lo que la hace menos vulnerable ante cambios en las dinámicas costeras, si bien, debido a la configuración de las redes de ferrocarriles, en general, una interrupción en este tipo de infraestructura, en gran parte debido a la falta de alternativas de desvío, supone que el tráfico se ve más afectado que en el caso del tráfico rodado.

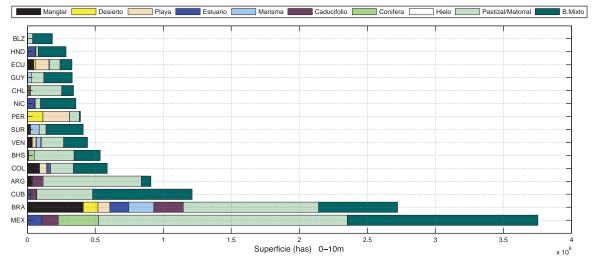
4.1.4 Ecosistemas afectados

También se ha llevado a cabo un examen de la distribución de los ecosistemas en ALyC entre las cotas 0 y 10 con resolución de 1 m para cada una de las 15.000 unidades de estudio. Nótese que la distribución de ecosistemas varía entre cotas ya que unos ecosistemas dominan en las zonas más bajas (estuarios y marismas, por ejemplo) mientras que otros predominan en zonas más elevadas (coníferas). Se puede observar esta variación en los gráficos de superficie por países de cada ecosistema hasta las cotas 1, 3 y 10 m –figura 2.50, figura 2.51 y figura 2.53—. También varía la distribución de países por superficie total de ecosistemas entre cada cota ya que hasta la elevación de 10 m los cuatro países más afectados son México, Brasil, Cuba y Argentina, mientras que hasta la cota 1 m destacan México, Brasil, Colombia y Ecuador, apareciendo Argentina en sexto lugar y Cuba en el noveno puesto, con menos de la mitad de superficie afectada que Argentina, a la que supera en superficie hasta los 10 m.


FIGURA 2.50
DISTRIBUCIÓN DE ECOSISTEMAS EN AMÉRICA LATINA Y EL CARIBE
ENTRE LAS COTAS 0 Y 1 M. CLASIFICACIÓN POR PAÍS

(Hectáreas de cada ecosistema)

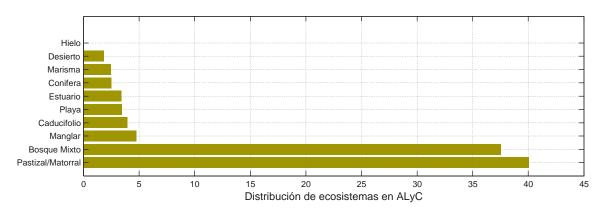
Fuente: Elaboración propia a partir de datos de STRM-90, GlobCover y LandCover.


FIGURA 2.51
DISTRIBUCIÓN DE ECOSISTEMAS EN AMÉRICA LATINA Y EL CARIBE
ENTRE LAS COTAS 0 Y 3 M. CLASIFICACIÓN POR PAÍS
(Hectáreas de cada ecosistema)

Fuente: Elaboración propia a partir de datos de STRM-90, GlobCover y LandCovery Usos del suelo.

FIGURA 2.52 DISTRIBUCIÓN DE ECOSISTEMAS EN AMÉRICA LATINA Y EL CARIBE ENTRE LAS COTAS 0 Y 10 M. CLASIFICACIÓN POR PAÍS

(Hectáreas de cada ecosistema)

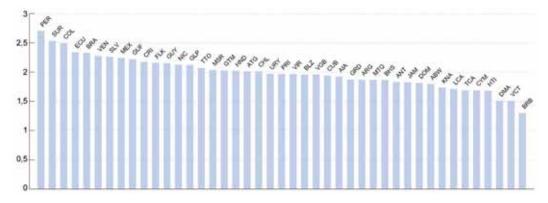


Fuente: Elaboración propia a partir de datos de STRM-90, GlobCover y LandCover.

Los ecosistemas terrestres más abundantes son los que se han clasificado como Pastizal/matorral (aproximadamente 40%), seguidos de cerca del Bosque mixto (37%), mientras que los demás están por debajo del 5%, destacando los manglares, que aun encontrándose tan sólo entre las cotas 0 a 1 m ocupan la tercera posición como ecosistema más numeroso –figura 2.53–.

FIGURA 2.53
DISTRIBUCIÓN DE ECOSISTEMAS EN AMÉRICA LATINA Y EL CARIBE
ENTRE LAS COTAS 0 Y 10 M. CLASIFICACIÓN POR PAÍS

(En porcentaje de la superficie total de ecosistemas)

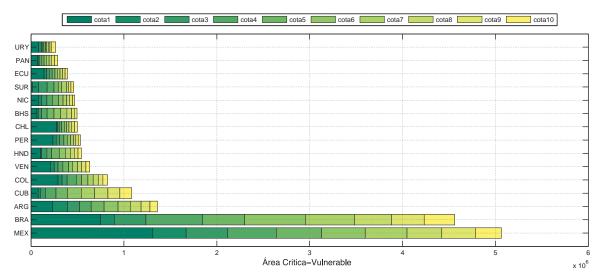


Fuente: Elaboración propia a partir de datos de STRM-90, GlobCover y LandCover.

A partir de los índices de vulnerabilidad definidos anteriormente se ha construido un índice de vulnerabilidad ecológica agregado (variando entre los valores 1 y 3) en cada unidad de estudio. Este índice es independiente de la superficie afectada y sólo contabiliza la importancia ecológica (véase apartado 2.5). El valor medio de este índice en cada país se proporciona en el cuadro 2.38 y

se representa en la figura 2.54. Obsérvese que los dos países con mayor superficie de ecosistemas en la franja costera (México y Brasil) se encuentran en los diez primeros puestos según el índice de vulnerabilidad ecológica.

FIGURA 2.54 ÍNDICE DE VALORACIÓN ECOLÓGICA MEDIA PARA CADA PAÍS DE AMÉRICA LATINA Y EL CARIBE


Fuente: Elaboración propia.

CUADRO 2.38 ÍNDICE DE VALORACIÓN ECOLÓGICA MEDIO PARA CADA PAÍS DE AMÉRICA LATINA Y EL CARIBE

	País	$\mathbf{V}_{ ext{ECO}}$		País	$\mathbf{V}_{ ext{ECO}}$		País	$\mathbf{V}_{ ext{ECO}}$
1	PER	2,699	16	MSR	2,033	31	BHS	1,862
2	SUR	2,532	17	GTM	2,026	32	ANT	1,826
3	COL	2,489	18	HND	2,020	33	JAM	1,824
4	ECU	2,335	19	ATG	2,011	34	DOM	1,814
5	BRA	2,327	20	CHL	2,010	35	ABW	1,793
6	VEN	2,274	21	URY	1,967	36	KNA	1,732
7	SLV	2,257	22	PRI	1,967	37	LCA	1,709
8	MEX	2,238	23	VIR	1,965	38	TCA	1,685
9	GUF	2,219	24	BLZ	1,957	39	CYM	1,685
10	CRI	2,174	25	VGB	1,955	40	HTI	1,680
11	FLK	2,155	26	CUB	1,939	41	DMA	1,508
12	GUY	2,151	27	AIA	1,921	42	VCT	1,507
13	NIC	2,122	28	GRD	1,869	43	BRB	1,300
14	GLP	2,119	29	ARG	1,866			
15	TTO	2,068	30	MTQ	1,865			

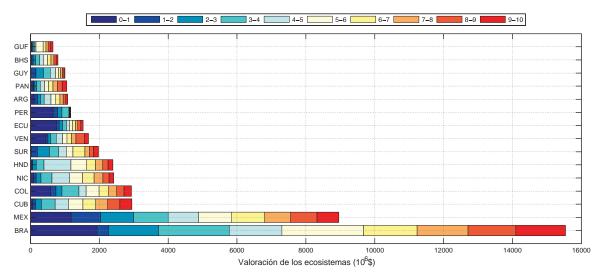
Fuente: Elaboración propia a partir de la información de GlobCover y LandCover.

FIGURA 2.55
DISTRIBUCIÓN ENTRE LAS COTAS 0 Y 10 M DE LA SUPERFICIE CRÍTICAVULNERABLE EN AMÉRICA LATINA Y EL CARIBE. CLASIFICACIÓN POR PAÍS
(Hectáreas)

La figura 2.55 representa la superficie que se considera crítica-vulnerable según la clasificación y los términos expuestos anteriormente. Los cinco primeros puestos por países se corresponde también con los países que tienen mayor superficie expuesta en la franja costera, lo que indica que además de presentar grandes áreas de terreno, éstas ya se encuentran con un grado de amenaza significativo.

A partir de los datos obtenidos sobre la distribución de ecosistemas en cada una de las aproximadamente 15.000 unidades de estudio ha sido posible realizar una valoración de los mismos con base en la valoración de Constanza y otros (1997). El cuadro 2.39 resume estos valores agregados por países y por cotas. Es llamativo que la valoración para Brasil sea superior a la de México, país que lidera el ranking en función de la superficie de ecosistemas en la franja costera y que, sin embargo, está por detrás en cuanto a valoración (según Constanza), lo que indica un mayor valor de los ecosistemas de Brasil (la riqueza ecológica de Brasil supone en torno al 60% de la de México). El resto de los países se sitúa muy por debajo de estos dos en valoración económica de los ecosistemas, en términos de magnitud absoluta, ya que como se ha visto previamente presentan grandes superficies de ecosistemas pero no aparecen clasificados en puestos tan altos atendiendo al índice de vulnerabilidad ecológica.

CUADRO 2.39
VALORACIÓN DE LOS ECOSISTEMAS EN AMÉRICA LATINA Y EL CARIBE
(Millones de dólares)


País	Cota 1	Cota 2	Cota 3	Cota 4	Cota 5	Cota 6	Cota 7	Cota 8	Cota 9	Cota 10	TOTAL
BRA	1 930,97	335,74	1 453,79	2 059,29	1 524,25	2 367,17	1 563,25	1 479,85	1 387,83	1 442,89	15 545,03
MEX	1 181,73	860,12	953,65	1 006,31	876,10	970,87	957,84	752,44	765,76	633,79	8 958,61
CUB	56,15	85,77	171,75	403,56	392,60	414,72	369,18	351,02	354,76	345,64	2 945,14
COL	586,42	153,51	173,95	495,82	207,54	374,61	270,50	243,81	213,45	216,02	2 935,63
NIC	82,10	81,82	141,07	318,00	515,22	373,70	334,35	254,69	181,92	133,57	2 416,45

(conclusión)

País	Cota 1	Cota 2	Cota 3	Cota 4	Cota 5	Cota 6	Cota 7	Cota 8	Cota 9	Cota 10	TOTAL
HND	42,03	17,76	109,27	223,15	782,33	457,63	259,43	207,03	153,85	138,73	2 391,22
SUR	18,11	183,93	348,34	269,54	223,53	187,51	351,68	125,74	122,05	146,86	1 977,30
VEN	451,39	55,61	80,89	166,13	176,46	130,01	134,03	125,99	244,40	123,34	1 688,23
ECU	750,39	85,62	97,23	107,39	90,95	85,55	87,98	69,68	83,58	70,73	1 529,08
PER	657,78	130,13	126,62	202,78	12,18	10,31	9,06	8,04	7,57	6,25	1 170,70
ARG	109,60	101,30	87,26	101,26	196,85	139,59	119,59	92,67	74,44	61,27	1 083,83
PAN	91,94	15,33	69,37	107,88	125,21	116,92	126,00	131,57	133,41	135,11	1 052,74
GUY	15,76	142,38	216,65	204,18	150,86	86,27	58,02	57,55	37,79	34,13	1 003,58
BHS	40,00	36,34	78,36	111,42	118,62	108,97	102,53	83,44	66,47	49,84	795,99
GUF	34,09	17,15	26,61	48,14	30,72	213,40	78,57	63,20	61,56	77,92	651,35
SLV	22,61	0,95	3,16	8,04	46,54	96,13	123,96	93,49	98,91	74,42	568,22
BLZ	29,04	38,89	44,42	59,21	45,09	42,65	45,87	42,00	36,95	38,17	422,27
GTM	4,75	0,38	1,20	2,75	164,47	34,45	50,16	53,42	53,72	54,36	419,67
CHL	94,13	12,24	18,38	40,49	35,22	31,84	36,37	41,41	40,01	41,50	391,60
CRI	24,31	3,02	6,41	13,17	24,51	32,68	54,83	69,77	94,49	68,33	391,54
DOM	15,04	7,59	8,94	19,00	32,18	20,59	14,16	10,44	12,97	8,27	149,19
TTO	9,09	0,27	19,21	14,14	17,72	13,28	14,70	12,87	19,83	15,80	136,88
URY	11,09	14,39	6,23	3,92	5,62	4,06	5,24	7,58	4,87	19,31	82,30
FLK	40,35	2,58	3,60	6,43	3,78	4,22	4,62	5,09	5,36	5,81	81,82
JAM	20,85	3,88	5,18	8,99	9,68	6,45	5,66	4,46	4,24	4,01	73,41
HTI	6,67	5,05	11,18	20,73	13,61	6,96	3,89	2,10	1,43	0,93	72,53
CYM	0,55	0,05	0,04	0,44	2,36	6,70	3,52	2,50	1,69	1,00	18,86
GLP	1,57	0,78	1,03	1,93	2,52	2,59	2,27	1,80	2,85	1,48	18,82
ATG	1,01	0,37	0,35	0,69	0,97	1,10	2,40	2,64	2,27	1,47	13,26
TCA	0,14	0,04	1,00	1,69	1,59	1,17	1,95	1,23	0,64	0,38	9,83
MTQ	1,30	0,03	0,07	0,16	0,52	0,53	1,95	2,18	1,47	1,26	9,48
ANT	1,21	0,04	0,14	0,25	0,34	0,78	0,63	0,53	0,82	0,70	5,43
AIA	0,84	0,24	0,51	0,36	0,32	0,27	0,22	0,20	0,19	0,14	3,27
LCA	0,70	0,02	0,03	0,05	0,12	0,16	0,35	0,34	0,34	0,62	2,74
VGB	0,70	0,09	0,15	0,17	0,16	0,13	0,16	0,19	0,16	0,13	2,05
VIR	0,59 0,63	0,02	0,05	0,10	0,09	0,15	0,20	0,15	0,13	0,11	1,59
GRD			0,01	0,02	0,03	0,05	0,08	0,11	0,12	0,09	1,13
DMA KNA	0,32 0,36	0,01 0,01	0,01	0,05 0,06	0,06 0,07	0,06	0,10 0,11	0,09	0,08	0,16 0,07	0,93 0,91
VCT	0,34	0,00	0,03	0,00	0,07	0,00	0,02	0,04	0,03	0,07	0,53
ABW	0,08	0,00	0,00	0,01	0,02	0,02	0,02	0,04	0,03	0,04	0,33
MSR	0,08	0,02	0,00	0,04	0,00	0,03	0,03	0,03	0,04	0,04	0,20
BRB	0,09	0,00	0,00	0,00	0,00	0,02	0,00	0,00	0,02	0,01	0,20
DAD	0,09	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,12

Fuente: Elaboración propia a partir de la información de Globcover y LandCover. Criterio de valoración: Constanza y otros (1997).

FIGURA 2.56
DISTRIBUCIÓN ENTRE LAS COTAS 0 Y 10 M DE LA VALORACIÓN DE LOS
ECOSISTEMAS EN AMÉRICA LATINA Y EL CARIBE. CLASIFICACIÓN POR PAÍS
(Millones de dólares)

Fuente: Elaboración propia a partir de criterio de valoración Constanza y otros (1997).

4.1.5 Superficie de cultivos afectados

En este apartado se analiza los cultivos de secano (rainfed croplands) y cultivos dispersos (mosaic croplands) a partir de los datos del GlobCover. Se ha seleccionado estas dos variables por tener importancia en la región y ser usos del suelo relativamente intensivos en su densidad de uso. Otras clasificaciones del suelo con porcentajes de uso del suelo para cultivo por debajo del 50% no han sido considerados. Por esta razón, estos dos tipos de cultivo suponen un límite inferior de la superficie afectada esperable.

FIGURA 2.57 DISTRIBUCIÓN DE LA SUPERFICIE DE TIERRAS DE CULTIVO DISPERSOS, POR COTAS Y POR PAÍSES

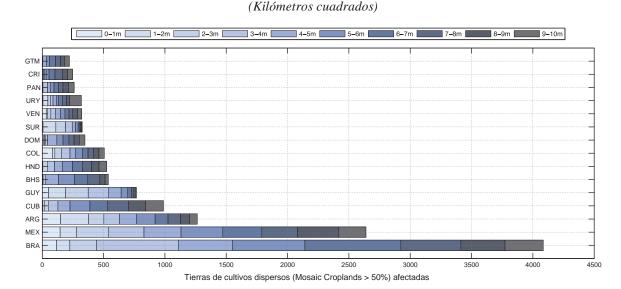
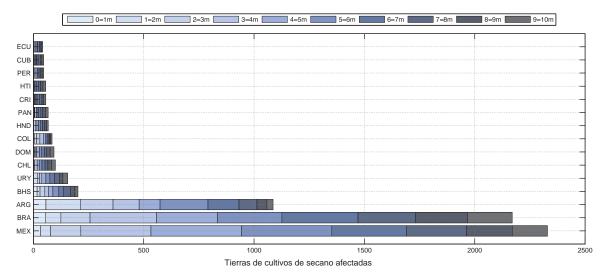



FIGURA 2.58
DISTRIBUCIÓN DE LA SUPERFICIE DE TIERRAS DE CULTIVO DE SECANO AFECTADAS, POR COTAS Y POR PAÍSES

(Kilómetros cuadrados)

Fuente: Elaboración propia a partir de datos de STRM-90 y GlobCover.

CUADRO 2.40
RELACIÓN DE PAÍSES POR SUPERFICIE AFECTADA DEL TOTAL DE CULTIVOS DISPERSOS ENTRE LAS COTAS 0 Y 10 M

(Kilómetros cuadrados)

País	Cota 0-1	Cota 1-2	Cota 2-3	Cota 3-4	Cota 4-5	Cota 5-6	Cota 6-7	Cota 7-8	Cota 8-9	Cota 9-10	TOTAL
BRA	116,78	108,14	218,81	665,32	441,42	591,10	782,17	489,47	359,93	312,07	4 085,20
MEX	145,83	134,96	257,91	291,02	301,73	340,51	318,39	289,87	338,05	221,37	2 639,64
ARG	148,62	227,16	126,62	128,55	136,20	153,18	105,53	101,51	72,72	64,10	1 264,19
CUB	3,54	12,82	36,89	74,35	98,90	162,53	145,03	168,34	140,06	145,62	988,09
GUY	51,42	139,12	184,38	167,07	101,32	53,82	29,10	19,94	12,84	9,40	768,42
BHS	1,00	1,10	4,47	22,11	104,30	128,32	109,83	98,56	42,65	26,74	539,07
HND	2,11	2,75	40,14	55,23	62,56	84,35	80,38	74,67	60,95	62,73	525,87
COL	84,62	18,31	53,79	69,84	43,06	56,80	47,25	45,52	43,58	43,35	506,11
DOM	8,58	9,22	10,66	15,16	75,59	50,21	48,54	41,32	43,20	45,53	347,99
SUR	6,71	103,89	78,78	55,16	26,73	21,50	12,81	6,51	8,20	5,34	325,63
VEN	32,56	12,68	24,58	37,23	42,73	35,06	33,51	30,76	38,94	33,48	321,52
URY	5,80	40,51	22,77	19,25	25,69	20,05	29,39	32,77	28,38	94,85	319,47
PAN	2,20	0,55	2,93	36,28	27,05	27,05	37,16	35,67	45,42	45,16	259,48
CRI	1,17	1,28	6,17	7,35	15,39	24,52	47,90	62,90	38,83	41,81	247,34
GTM	0,29	0,06	0,32	4,30	28,80	25,73	48,91	40,59	34,68	38,18	221,87
HTI	7,70	0,32	1,85	6,67	15,94	27,35	34,33	38,42	37,03	36,56	206,17

(conclusión)

País	Cota 0-1	Cota 1-2	Cota 2-3	Cota 3-4	Cota 4-5	Cota 5-6	Cota 6-7	Cota 7-8	Cota 8-9	Cota 9-10	TOTAL
NIC	5,06	5,74	18,63	32,15	26,86	19,75	15,11	18,67	19,08	18,79	179,84
ECU	3,86	2,37	12,29	17,64	20,70	15,86	34,68	21,51	20,91	21,59	171,40
SLV	0,06	0,07	0,22	3,16	14,31	23,97	37,80	24,63	23,14	17,20	144,57
PRI	3,29	6,74	8,71	8,41	8,67	9,59	7,81	8,23	8,28	14,41	84,13
JAM	7,10	4,56	5,40	8,24	13,11	10,16	8,00	8,38	8,28	8,36	81,58
CHL	1,89	0,49	3,18	7,78	8,86	6,78	8,08	11,73	12,80	16,76	78,35
PER	0,27	0,24	2,04	2,50	2,63	4,78	7,80	10,42	9,21	10,44	50,33
TTO	0,48	0,02	2,33	1,08	3,89	3,93	3,38	3,79	13,41	5,47	37,77
BLZ	1,06	2,28	1,70	2,34	2,58	2,06	3,52	3,54	2,84	3,65	25,56
GUF	1,60	0,22	1,08	0,41	1,25	2,24	0,76	1,94	3,28	4,75	17,51
TCA	0,02	0,00	0,01	0,00	0,13	0,40	4,24	4,34	4,26	3,67	17,06
ATG	0,15	0,11	0,23	0,36	0,39	2,17	2,29	1,86	2,20	1,25	11,02
GLP	0,15	0,34	0,28	0,69	0,70	0,74	0,66	0,66	1,37	0,93	6,51
MTQ	0,38	0,04	0,04	0,17	0,29	0,62	0,75	0,70	0,49	0,49	3,98
VIR	0,04	0,06	0,02	0,11	0,31	0,31	0,46	0,40	0,63	0,52	2,86
VGB	0,06	0,00	0,13	0,54	0,56	0,20	0,43	0,41	0,27	0,11	2,71
ANT	0,02	0,00	0,00	0,07	0,13	0,26	0,25	0,44	0,44	0,92	2,53
CYM	0,02	0,04	0,03	0,08	0,22	0,86	0,30	0,32	0,23	0,34	2,44
KNA	0,01	0,10	0,17	0,48	0,28	0,21	0,22	0,24	0,29	0,26	2,25
AIA	0,06	0,06	0,09	0,07	0,18	0,15	0,27	0,18	0,32	0,45	1,83
LCA	0,17	0,00	0,01	0,00	0,00	0,22	0,20	0,11	0,15	0,06	0,92
BRB	0,06	0,00	0,01	0,00	0,03	0,05	0,13	0,18	0,16	0,16	0,78
GRD	0,10	0,00	0,00	0,01	0,01	0,06	0,04	0,11	0,11	0,17	0,61
ABW	0,00	0,00	0,00	0,00	0,00	0,14	0,06	0,11	0,06	0,09	0,46
VCT	0,05	0,00	0,01	0,02	0,00	0,06	0,05	0,11	0,06	0,07	0,43
MSR	0,02	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,01	0,00	0,03
DMA	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Fuente: Elaboración propia a partir de la información de GlobCover.

CUADRO 2.41
RELACIÓN DE PAÍSES POR SUPERFICIE AFECTADA EN EL TOTAL DE CULTIVOS
DE SECANO ENTRE LAS COTAS 0 Y 10 M

(Kilómetros cuadrados)

País	Cota 0-1	Cota 1-2	Cota 2-3	Cota 3-4	Cota 4-5	Cota 5-6	Cota 6-7	Cota 7-8	Cota 8-9	Cota 9-10	TOTAL
MEX	33,13	45,20	136,76	318,02	409,54	409,50	339,49	270,30	208,20	159,56	2 329,69
BRA	56,04	68,80	132,26	301,34	276,48	291,44	345,04	259,07	236,31	203,03	2 169,80
ARG	56,99	156,10	148,04	118,44	94,75	217,06	140,77	81,19	45,04	28,03	1 086,42
BHS	17,23	13,26	21,74	17,20	19,08	26,82	22,45	31,56	19,37	13,37	202,07
URY	0,92	17,25	9,15	10,95	18,69	17,72	21,74	21,30	16,33	21,85	155,92
CHL	1,13	0,14	3,86	12,40	11,40	10,29	14,09	12,70	17,42	16,67	100,08
DOM	2,46	2,30	3,99	5,61	13,74	9,72	11,83	11,27	15,27	17,60	93,78
COL	4,53	10,04	15,11	17,07	7,99	7,42	5,09	5,87	5,47	6,35	84,94
HND	0,54	0,77	7,23	7,36	7,45	7,94	9,74	10,56	9,06	6,87	67,52
PAN	4,93	0,61	0,92	6,54	4,01	6,49	10,43	8,43	13,88	10,89	67,14
CRI	0,79	0,51	4,22	2,06	4,57	4,97	10,43	11,72	7,87	9,51	56,64
HTI	2,75	0,08	0,26	1,26	3,62	5,86	8,87	9,85	11,28	11,83	55,64
PER	0,31	1,26	3,23	7,18	6,80	5,90	4,94	4,94	6,01	6,40	46,98
CUB	1,47	1,39	4,13	2,38	3,65	3,97	7,58	7,55	7,08	7,65	46,83
ECU	0,53	0,54	3,01	4,44	8,08	3,51	8,15	5,56	4,46	4,20	42,48
PRI	1,14	0,77	1,39	1,85	2,03	2,32	2,01	2,90	2,66	1,73	18,79
GTM	0,30	0,02	0,02	0,58	1,71	1,44	3,26	1,64	3,07	3,52	15,57
NIC	0,46	0,61	2,88	1,86	2,26	1,72	1,64	1,85	0,97	1,26	15,52
BLZ	0,00	0,00	0,00	0,49	0,49	0,99	3,70	3,24	2,48	2,98	14,38
CYM	0,00	0,00	0,01	0,00	2,33	5,26	2,11	1,51	0,51	0,52	12,25
JAM	0,96	0,26	0,53	1,11	1,35	1,26	1,31	1,30	1,64	1,51	11,24
TCA	0,00	0,06	0,17	0,23	0,31	0,79	2,11	2,80	1,78	1,29	9,56
VEN	3,43	0,49	0,54	0,74	0,98	0,63	0,92	0,30	0,11	0,38	8,53
SLV	0,89	0,03	0,02	0,03	0,32	0,28	0,98	0,27	0,17	0,22	3,22
GLP	0,01	0,12	0,06	0,10	0,08	0,30	0,43	0,35	1,35	0,41	3,21
ATG	0,00	0,11	0,04	0,87	0,50	0,34	0,22	0,25	0,11	0,11	2,54
TTO	0,00	0,00	0,38	0,05	0,28	0,22	0,11	0,31	0,53	0,47	2,35
MTQ	0,79	0,02	0,04	0,09	0,12	0,17	0,45	0,23	0,11	0,10	2,12
GUY	0,32	1,09	0,37	0,08	0,03	0,01	0,00	0,02	0,00	0,00	1,91
VCT	0,49	0,01	0,05	0,11	0,12	0,15	0,25	0,15	0,11	0,11	1,55
VIR	0,30	0,02	0,03	0,05	0,10	0,06	0,05	0,15	0,07	0,13	0,96
LCA	0,33	0,01	0,00	0,01	0,00	0,03	0,14	0,13	0,16	0,11	0,92
BRB	0,02	0,00	0,00	0,01	0,01	0,04	0,02	0,05	0,13	0,17	0,45
GUF	0,05	0,00	0,00	0,00	0,02	0,04	0,02	0,05	0,12	0,12	0,41

/ 1	
Lanna	lusión)

País	Cota 0-1	Cota 1-2	Cota 2-3	Cota 3-4	Cota 4-5	Cota 5-6	Cota 6-7	Cota 7-8	Cota 8-9	Cota 9-10	TOTAL
ANT	0,01	0,00	0,00	0,00	0,02	0,01	0,01	0,05	0,04	0,13	0,26
KNA	0,12	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,13
VGB	0,07	0,00	0,00	0,00	0,00	0,01	0,01	0,02	0,01	0,00	0,12
ABW	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,04	0,04
GRD	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,01	0,00	0,00	0,03
SUR	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
AIA	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MSR	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
DMA	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Fuente: Elaboración propia a partir de la información de GlobCover.

En los cuadros 2.42 y 2.43 reflejan la superficie de cultivos que se ha identificado en las costas (unidades de estudio) respecto al total presente en el país con el fin de proporcionar una medida de la importancia relativa de los cultivos en las costas. Como se puede apreciar a la vista de los resultados, las islas son las regiones más susceptibles a este respecto ya que gran parte de sus cultivos se localizan en la franja costera (Bahamas el 84% y 82%, Islas Caimán, 44 y 96%, Suriname, Islas Turcas y Caicos, Guyana, etc.).

CUADRO 2.42
RELACIÓN DE ÁREAS DE CULTIVOS DISPERSOS (MOSAIC CROPLANDS)
EN LA COSTA (RECOGIDAS EN LOS POLÍGONOS DE ESTUDIO) RESPECTO
AL TOTAL DE CADA PAÍS

País	Código ISO País	Área de cultivos en la costa (m²)	Área de cultivos en el país (<i>m</i> ²)	Cultivo en costa respecto al total del país (%)
ATG	28	11 024 100	67 545 900	16,3
ARG	32	1 264 190 000	116 072 000 000	1,1
BHS	44	539 071 000	643 918 000	83,7
BRB	52	777 600	71 482 500	1,1
BRA	76	4 085 200 000	900 588 000 000	0,5
BLZ	84	25 563 600	582 973 000	4,4
VGB	92	2 705 400	15 122 700	17,9
CYM	136	2 438 100	5 475 600	44,5
CHL	152	78 351 300	13 787 600 000	0,6
COL	170	506 112 000	73 669 500 000	0,7
CRI	188	247 342 000	7 022 260 000	3,5
CUB	192	988 087 000	10 630 900 000	9,3
DMA	212	0	2 122 200	0,0
DOM	214	347 992 000	7 672 300 000	4,5

(conclusión)

País	Código ISO País	Área de cultivos en la costa (m²)	Área de cultivos en el país (m²)	Cultivo en costa respecto al total del país (%)
ECU	218	171 396 000	36 119 600 000	0,5
SLV	222	144 569 000	4 186 390 000	3,5
GUF	254	17 512 200	184 324 000	9,5
GRD	308	607 500	17 172 000	3,5
GLP	312	6 512 400	104 417 000	6,2
GTM	320	221 867 000	4 664 070 000	4,8
GUY	328	768 423 000	4 410 450 000	17,4
нті	332	206 169 000	11 361 400 000	1,8
HND	340	525 868 000	13 965 600 000	3,8
JAM	388	81 583 200	1 092 410 000	7,5
MTQ	474	3 977 100	45 222 300	8,8
MEX	484	2 639 640 000	48 848 400 000	5,4
MSR	500	32 400	7 371 000	0,4
ANT	530	2 527 200	63 325 800	4,0
ABW	533	461 700	8 699 400	5,3
NIC	558	179 844 000	20 495 800 000	0,9
PAN	591	259 475 000	5 730 300 000	4,5
PER	604	50 333 400	35 593 700 000	0,1
PRI	630	84 126 600	574 063 000	14,7
KNA	659	2 251 800	63 690 300	3,5
AIA	660	1 830 600	21 967 200	8,3
LCA	662	915 300	44 517 600	2,1
VCT	670	429 300	27 386 100	1,6
SUR	740	325 628 000	753 251 000	43,2
TTO	780	37 770 300	251 959 000	15,0
TCA	796	17 058 600	39 106 800	43,6
VIR	850	2 859 300	55 914 300	5,1
URY	858	319 472 000	21 975 100 000	1,5
VEN	862	321 521 000	56 015 600 000	0,6

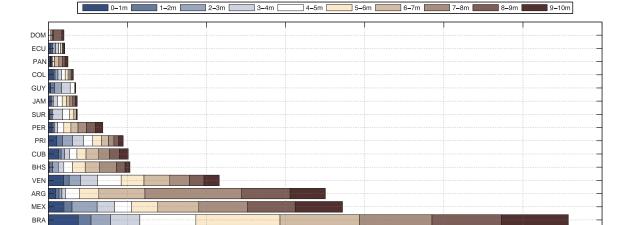
Fuente: Elaboración propia a partir de la información de GlobCover.

CUADRO 2.43
RELACIÓN DE ÁREAS DE CULTIVOS DE SECANO EN LA COSTA (RECOGIDAS EN LOS POLÍGONOS DE ESTUDIO) RESPECTO AL TOTAL DE CADA PAÍS

ATG 28 2 543 400 17 285 400 14,7 ARG 32 1 086 420 000 279 307 000 000 0,4 BHS 44 202 071 000 245 333 000 82,4 BRB 52 453 600 29 994 300 1,5 BRA 76 2 169 800 000 695 992 000 000 0,3 BLZ 84 14 377 500 170 497 000 8,4 VGB 92 121 500 3 888 000 3,1 CYM 136 12 247 200 12 684 600 96,6 CHL 152 100 084 000 15 257 000 000 0,7 COL 170 84 944 700 16 195 100 000 0,5 CRI 188 56 635 200 1 637 840 000 3,5 CUB 192 46 834 200 805 464 000 5,8 DMA 212 0 2 130 300 0,0 DOM 214 93 781 800 1 524 150 000 6,2 ECU 218 42 476 400 8 833 99
BHS 44 202 071 000 245 333 000 82,4 BRB 52 453 600 29 994 300 1,5 BRA 76 2 169 800 000 695 992 000 000 0,3 BLZ 84 14 377 500 170 497 000 8,4 VGB 92 121 500 3 888 000 3,1 CYM 136 12 247 200 12 684 600 96,6 CHL 152 100 084 000 15 257 000 000 0,7 COL 170 84 944 700 16 195 100 000 0,5 CRI 188 56 635 200 1 637 840 000 3,5 CUB 192 46 834 200 805 464 000 5,8 DMA 212 0 2 130 300 0,0 DOM 214 93 781 800 1 524 150 000 6,2 ECU 218 42 476 400 8 833 990 000 0,5 SLV 222 3 215 700 23 943 600 13,4 FLK 238 9 161 100 1773 900
BRB 52 453 600 29 994 300 1,5 BRA 76 2 169 800 000 695 992 000 000 0,3 BLZ 84 14 377 500 170 497 000 8,4 VGB 92 121 500 3 888 000 3,1 CYM 136 12 247 200 12 684 600 96,6 CHL 152 100 084 000 15 257 000 000 0,7 COL 170 84 944 700 16 195 100 000 0,5 CRI 188 56 635 200 1 637 840 000 3,5 CUB 192 46 834 200 805 464 000 5,8 DMA 212 0 2 130 300 0,0 DOM 214 93 781 800 1 524 150 000 6,2 ECU 218 42 476 400 8 833 990 000 0,5 SLV 222 3 215 700 23 943 600 13,4 FLK 238 9 161 100 143 346 000 6,4 GUF 254 413 100 1 773 900
BRA 76 2 169 800 000 695 992 000 000 0,3 BLZ 84 14 377 500 170 497 000 8,4 VGB 92 121 500 3 888 000 3,1 CYM 136 12 247 200 12 684 600 96,6 CHL 152 100 084 000 15 257 000 000 0,7 COL 170 84 944 700 16 195 100 000 0,5 CRI 188 56 635 200 1 637 840 000 3,5 CUB 192 46 834 200 805 464 000 5,8 DMA 212 0 2 130 300 0,0 DOM 214 93 781 800 1 524 150 000 6,2 ECU 218 42 476 400 8 833 990 000 0,5 SLV 222 3 215 700 23 943 600 13,4 FLK 238 9 161 100 143 346 000 6,4 GUF 254 413 100 1 773 900 23,3 GRD 308 32 400 5 775 300
BLZ 84 14 377 500 170 497 000 8,4 VGB 92 121 500 3 888 000 3,1 CYM 136 12 247 200 12 684 600 96,6 CHL 152 100 084 000 15 257 000 000 0,7 COL 170 84 944 700 16 195 100 000 0,5 CRI 188 56 635 200 1 637 840 000 3,5 CUB 192 46 834 200 805 464 000 5,8 DMA 212 0 2 130 300 0,0 DOM 214 93 781 800 1 524 150 000 6,2 ECU 218 42 476 400 8 833 990 000 0,5 SLV 222 3 215 700 23 943 600 13,4 FLK 238 9 161 100 143 346 000 6,4 GUF 254 413 100 1 773 900 23,3 GRD 308 32 400 5 775 300 0,6 GLP 312 3 207 600 59 616 000 5,4 GTM 320 15 568 200 1 100 090 000 1,4
VGB 92 121 500 3 888 000 3,1 CYM 136 12 247 200 12 684 600 96,6 CHL 152 100 084 000 15 257 000 000 0,7 COL 170 84 944 700 16 195 100 000 0,5 CRI 188 56 635 200 1 637 840 000 3,5 CUB 192 46 834 200 805 464 000 5,8 DMA 212 0 2 130 300 0,0 DOM 214 93 781 800 1 524 150 000 6,2 ECU 218 42 476 400 8 833 990 000 0,5 SLV 222 3 215 700 23 943 600 13,4 FLK 238 9 161 100 143 346 000 6,4 GUF 254 413 100 1 773 900 23,3 GRD 308 32 400 5 775 300 0,6 GLP 312 3 207 600 59 616 000 5,4 GTM 320 15 568 200 1 100 090 000
CYM 136 12 247 200 12 684 600 96,6 CHL 152 100 084 000 15 257 000 000 0,7 COL 170 84 944 700 16 195 100 000 0,5 CRI 188 56 635 200 1 637 840 000 3,5 CUB 192 46 834 200 805 464 000 5,8 DMA 212 0 2 130 300 0,0 DOM 214 93 781 800 1 524 150 000 6,2 ECU 218 42 476 400 8 833 990 000 0,5 SLV 222 3 215 700 23 943 600 13,4 FLK 238 9 161 100 143 346 000 6,4 GUF 254 413 100 1 773 900 23,3 GRD 308 32 400 5 775 300 0,6 GLP 312 3 207 600 59 616 000 5,4 GTM 320 15 568 200 1 100 090 000 1,4 GUY 328 1 911 600 3 005 100
CHL 152 100 084 000 15 257 000 000 0,7 COL 170 84 944 700 16 195 100 000 0,5 CRI 188 56 635 200 1 637 840 000 3,5 CUB 192 46 834 200 805 464 000 5,8 DMA 212 0 2 130 300 0,0 DOM 214 93 781 800 1 524 150 000 6,2 ECU 218 42 476 400 8 833 990 000 0,5 SLV 222 3 215 700 23 943 600 13,4 FLK 238 9 161 100 143 346 000 6,4 GUF 254 413 100 1 773 900 23,3 GRD 308 32 400 5 775 300 0,6 GLP 312 3 207 600 59 616 000 5,4 GTM 320 15 568 200 1 100 090 000 1,4 GUY 328 1 911 600 3 005 100 63,6
COL 170 84 944 700 16 195 100 000 0,5 CRI 188 56 635 200 1 637 840 000 3,5 CUB 192 46 834 200 805 464 000 5,8 DMA 212 0 2 130 300 0,0 DOM 214 93 781 800 1 524 150 000 6,2 ECU 218 42 476 400 8 833 990 000 0,5 SLV 222 3 215 700 23 943 600 13,4 FLK 238 9 161 100 143 346 000 6,4 GUF 254 413 100 1 773 900 23,3 GRD 308 32 400 5 775 300 0,6 GLP 312 3 207 600 59 616 000 5,4 GTM 320 15 568 200 1 100 090 000 1,4 GUY 328 1 911 600 3 005 100 63,6
CRI 188 56 635 200 1 637 840 000 3,5 CUB 192 46 834 200 805 464 000 5,8 DMA 212 0 2 130 300 0,0 DOM 214 93 781 800 1 524 150 000 6,2 ECU 218 42 476 400 8 833 990 000 0,5 SLV 222 3 215 700 23 943 600 13,4 FLK 238 9 161 100 143 346 000 6,4 GUF 254 413 100 1 773 900 23,3 GRD 308 32 400 5 775 300 0,6 GLP 312 3 207 600 59 616 000 5,4 GTM 320 15 568 200 1 100 090 000 1,4 GUY 328 1 911 600 3 005 100 63,6
CUB 192 46 834 200 805 464 000 5,8 DMA 212 0 2 130 300 0,0 DOM 214 93 781 800 1 524 150 000 6,2 ECU 218 42 476 400 8 833 990 000 0,5 SLV 222 3 215 700 23 943 600 13,4 FLK 238 9 161 100 143 346 000 6,4 GUF 254 413 100 1 773 900 23,3 GRD 308 32 400 5 775 300 0,6 GLP 312 3 207 600 59 616 000 5,4 GTM 320 15 568 200 1 100 090 000 1,4 GUY 328 1 911 600 3 005 100 63,6
DMA 212 0 2 130 300 0,0 DOM 214 93 781 800 1 524 150 000 6,2 ECU 218 42 476 400 8 833 990 000 0,5 SLV 222 3 215 700 23 943 600 13,4 FLK 238 9 161 100 143 346 000 6,4 GUF 254 413 100 1 773 900 23,3 GRD 308 32 400 5 775 300 0,6 GLP 312 3 207 600 59 616 000 5,4 GTM 320 15 568 200 1 100 090 000 1,4 GUY 328 1 911 600 3 005 100 63,6
DOM 214 93 781 800 1 524 150 000 6,2 ECU 218 42 476 400 8 833 990 000 0,5 SLV 222 3 215 700 23 943 600 13,4 FLK 238 9 161 100 143 346 000 6,4 GUF 254 413 100 1 773 900 23,3 GRD 308 32 400 5 775 300 0,6 GLP 312 3 207 600 59 616 000 5,4 GTM 320 15 568 200 1 100 090 000 1,4 GUY 328 1 911 600 3 005 100 63,6
ECU 218 42 476 400 8 833 990 000 0,5 SLV 222 3 215 700 23 943 600 13,4 FLK 238 9 161 100 143 346 000 6,4 GUF 254 413 100 1 773 900 23,3 GRD 308 32 400 5 775 300 0,6 GLP 312 3 207 600 59 616 000 5,4 GTM 320 15 568 200 1 100 090 000 1,4 GUY 328 1 911 600 3 005 100 63,6
SLV 222 3 215 700 23 943 600 13,4 FLK 238 9 161 100 143 346 000 6,4 GUF 254 413 100 1 773 900 23,3 GRD 308 32 400 5 775 300 0,6 GLP 312 3 207 600 59 616 000 5,4 GTM 320 15 568 200 1 100 090 000 1,4 GUY 328 1 911 600 3 005 100 63,6
FLK 238 9 161 100 143 346 000 6,4 GUF 254 413 100 1 773 900 23,3 GRD 308 32 400 5 775 300 0,6 GLP 312 3 207 600 59 616 000 5,4 GTM 320 15 568 200 1 100 090 000 1,4 GUY 328 1 911 600 3 005 100 63,6
GUF 254 413 100 1 773 900 23,3 GRD 308 32 400 5 775 300 0,6 GLP 312 3 207 600 59 616 000 5,4 GTM 320 15 568 200 1 100 090 000 1,4 GUY 328 1 911 600 3 005 100 63,6
GRD 308 32 400 5 775 300 0,6 GLP 312 3 207 600 59 616 000 5,4 GTM 320 15 568 200 1 100 090 000 1,4 GUY 328 1 911 600 3 005 100 63,6
GLP 312 3 207 600 59 616 000 5,4 GTM 320 15 568 200 1 100 090 000 1,4 GUY 328 1 911 600 3 005 100 63,6
GTM 320 15 568 200 1 100 090 000 1,4 GUY 328 1 911 600 3 005 100 63,6
GUY 328 1 911 600 3 005 100 63,6
HTI 332 55 638 900 2 157 870 000 2,6
HND 340 67 521 600 2 163 420 000 3,1
JAM 388 11 242 800 511 426 000 2,2
MTQ 474 2 122 200 55 258 200 3,8
MEX 484 2 329 690 000 24 001 100 000 9,7
MSR 500 0 6 990 300 0,0
ANT 530 259 200 3 086 100 8,4
ABW 533 40 500 421 200 9,6
NIC 558 15 519 600 7 599 820 000 0,2
PAN 591 67 140 900 4 756 430 000 1,4
PER 604 46 980 000 14 352 000 000 0,3
PRI 630 18 792 000 71 490 600 26,3
KNA 659 129 600 12 660 300 1,0

300

ision)


País	Código ISO País	Área de cultivos en la costa (m²)	Área de cultivos en el país (m²)	Cultivo en costa respecto al total del país (%)
AIA	660	-	-	-
LCA	662	923 400	111 100 000	0,8
VCT	670	1 547 100	46 089 000	3,4
SUR	740	-	-	-
TTO	780	2 349 000	21 959 100	10,7
TCA	796	9 558 000	28 819 800	33,2
USA	840	9 363 600	54 159 700 000	0,0
VIR	850	955 800	10 108 800	9,5
URY	858	155 917 000	7 529 530 000	2,1
VEN	862	8 529 300	3 246 720 000	0,3

Fuente: Elaboración propia a partir de la información de GlobCover.

4.1.6 Superficie de ciudades afectadas

También se ha analizado la superficie de área urbana a partir de los datos del GlobCover. Bajo esta categoría se ha analizado las superficies artificiales y áreas asociadas (código 190-Artificial surfaces and associated areas (urban areas >50%)). La validación del GlobCover estableció que esta categoría podía estar sujeta a una infravaloración de la extensión de las áreas urbanas debido a la fuerte heterogeneidad de las áreas construidas. La figura 2.59 y el cuadro 2.44 muestran los resultados obtenidos agregados para cada país.

FIGURA 2.59 DISTRIBUCIÓN DE LA SUPERFICIE DE CIUDADES POR COTAS ENTRE 0 Y 10 M Y POR PAÍSES

(Kilómetros cuadrados)

Fuente: Elaboración propia a partir de datos de STRM-90 y GlobCover.

100

150

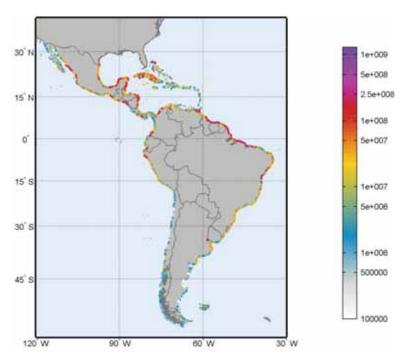
CUADRO 2.44
SUPERFICIE DE CIUDADES (ÁREA URBANA) POR COTAS. CLASIFICACIÓN POR PAÍS
(Kilómetros cuadrados)

País	Cota 0-1	Cota 1-2	Cota 2-3	Cota 3-4	Cota 4-5	Cota 5-6	Cota 6-7	Cota 7-8	Cota 8-9	Cota 9-10	TOTAL (km²)
BRA	18,94	8,09	12,28	18,58	35,38	53,16	50,34	45,72	43,89	42,34	328,71
MEX	9,88	5,14	15,86	10,91	10,64	16,77	25,92	30,83	30,11	29,89	185,95
ARG	4,72	2,07	1,80	2,45	8,53	12,34	29,18	61,11	30,64	22,28	175,11
VEN	9,66	3,52	7,32	10,72	14,83	14,42	16,31	12,39	9,23	9,66	108,08
BHS	0,60	2,03	3,71	3,47	5,59	7,91	9,19	10,47	5,57	3,05	51,61
CUB	6,50	1,63	2,24	3,17	4,55	5,78	8,01	6,90	6,21	5,53	50,52
PRI	5,37	3,55	6,54	6,74	5,88	5,47	4,47	3,43	2,97	2,87	47,29
PER	2,38	0,74	1,00	1,77	3,91	4,49	4,52	5,31	5,57	4,75	34,44
SUR	0,82	1,00	1,04	6,20	4,52	2,57	1,49	0,48	0,16	0,06	18,33
JAM	1,32	0,96	0,87	2,56	3,06	2,59	2,28	1,80	1,68	1,09	18,22
GUY	1,46	2,60	4,26	5,54	2,57	0,64	0,17	0,04	0,04	0,02	17,34
COL	3,22	1,09	1,81	2,37	2,18	1,85	1,22	0,95	0,71	0,45	15,85
PAN	1,21	0,31	0,28	0,36	0,58	1,15	2,79	2,16	1,78	1,80	12,43
ECU	1,76	0,93	2,02	1,75	1,29	1,03	0,56	0,49	0,39	0,17	10,38
DOM	0,04	0,00	0,00	0,04	1,20	0,98	0,48	0,49	5,28	1,36	9,87
ABW	0,51	0,11	0,25	0,16	1,62	1,66	1,41	1,56	1,20	1,23	9,72
MTQ	1,84	0,05	0,41	1,04	0,77	1,13	1,01	0,73	0,67	0,57	8,21
ANT	0,16	0,01	0,06	0,29	0,11	3,16	1,04	1,18	0,97	1,07	8,06
BRB	0,96	0,02	0,04	0,02	0,21	0,92	1,04	1,68	1,43	1,71	8,03
URY	0,62	0,83	0,40	0,67	0,62	0,50	0,37	0,66	0,83	0,65	6,15
LCA	1,46	0,03	0,06	0,14	0,18	0,79	0,98	0,83	0,58	0,75	5,80
CHL	1,91	0,10	0,21	0,23	0,28	0,33	0,79	0,62	0,55	0,76	5,79
TTO	1,17	0,19	0,30	0,38	1,04	0,72	0,53	0,32	0,25	0,26	5,16
GLP	0,06	0,01	0,00	0,20	0,31	0,66	0,52	0,67	0,92	0,40	3,75
GUF	0,25	0,00	0,00	0,01	0,02	0,06	0,32	0,34	0,56	0,53	2,08
GTM	0,24	0,01	0,00	0,00	0,01	0,08	0,08	0,08	0,41	0,20	1,12
CRI	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,00	0,02	0,01	0,06
VIR	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
TCA	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
VCT	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
AIA	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
KNA	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
NIC	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MSR	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MOIN	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

(conclusión)

País	Cota 0-1	Cota 1-2	Cota 2-3	Cota 3-4	Cota 4-5	Cota 5-6	Cota 6-7	Cota 7-8	Cota 8-9	Cota 9-10	TOTAL (km²)
HND	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
HTI	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
GRD	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SLV	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
DMA	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CYM	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
VGB	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BLZ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ATG	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Fuente: Elaboración propia a partir de la información de GlobCover.

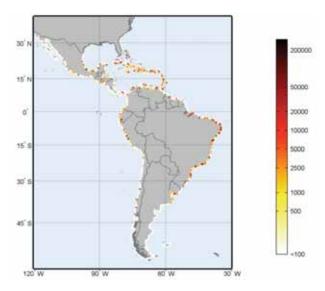

4.2 Análisis espacial

Las unidades de estudio (aproximadamente 5 km de línea de costa) se han agregado por países en el apartado previo para permitir una comparativa entre los mismos. Análogamente se realiza a continuación un análisis de la distribución espacial de algunas de las variables anteriores. En algunos casos se muestra el resultado para una determinada cota ya que los valores varían entre cada rango de elevaciones.

En la figura 2.60 se representa la valoración de los ecosistemas hasta la cota 10 m. Como se vio anteriormente, Brasil es el país con la mayor riqueza ecológica en términos absolutos. En este análisis se observa que la mayor riqueza ecológica se encuentra en la costa Norte de Brasil hasta el límite oriental de Venezuela (República Bolivariana de). La costa de México presenta mayor riqueza ecológica en la costa del Caribe y Pacífica Sur.

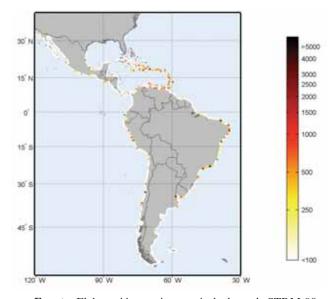
FIGURA 2.60
VALORACIÓN ECONÓMICA DE LOS ECOSISTEMAS HASTA LA COTA 10 M
EN LAS UNIDADES DE ESTUDIO DE 50 KM

(Dólares)


Fuente: Elaboración propia a partir de Constanza y otros (1997).

En la figura 2.61 se muestra la distribución espacial de la población hasta la cota 1 m. Brasil es el país con mayor población en este rango de elevación y se comprueba nuevamente en esta representación. Destacan claramente en el mapa las grandes aglomeraciones urbanas cerca de la costa, de manera especial en la costa Pacífica. Esta realidad es aún más marcada cuando se analiza la densidad de población en la franja costera (población entre superficie registrada) hasta la cota 10 –figura 2.62– donde destacan claramente zonas de gran concentración de población como Río, Sao Paulo y Buenos Aires.

Algunas de estas ciudades o zonas se ilustran con detalle en la figura 2.63 y siguientes, mostrando las máscaras de niveles, distribución espacial de población y diversos usos del suelo.


FIGURA 2.61 DISTRIBUCIÓN ESPACIAL DE LA POBLACIÓN AFECTADA ENTRE LAS COTAS 0 Y 1 M EN AMÉRICA LATINA Y EL CARIBE

(Número de habitantes)

Fuente: Elaboración propia a partir de datos de STRM-90 y GRUMP-CIESIN.

FIGURA 2.62
DENSIDAD DE POBLACIÓN HASTA LA COTA 10 M
EN LAS UNIDADES DE ESTUDIO DE 50 KM
(hab/km²)

Fuente: Elaboración propia a partir de datos de STRM-90 y GRUMP-CIESIN.

FIGURA 2.63 UNIDADES DE ANÁLISIS Y MÁSCARAS DE NIVELES DE 1, 5 Y 10 M EN BUENOS AIRES

FIGURA 2.64
UNIDADES DE ANÁLISIS Y MÁSCARAS DE NIVELES
DE 1, 5 Y 10 M EN KINGSTON

FIGURA 2.65
UNIDADES DE ANÁLISIS Y MÁSCARAS DE NIVELES
DE 1, 5 Y 10 M EN RÍO DE JANEIRO

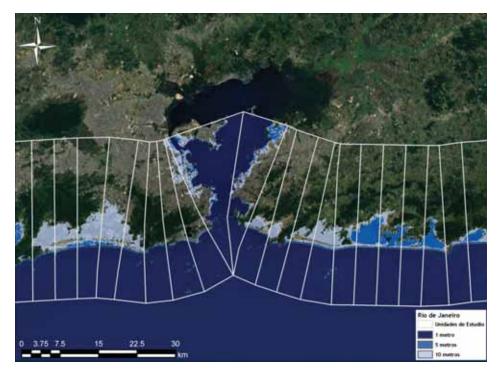


FIGURA 2.66
UNIDADES DE ANÁLISIS Y MÁSCARAS DE NIVELES
DE 1,5 Y 10 M EN LAS ISLAS TURCAS Y CAICOS

FIGURA 2.67 UNIDADES DE ANÁLISIS Y MÁSCARAS DE NIVELES DE 1, 5 Y 10 M EN BAHÍA DE VITORIA

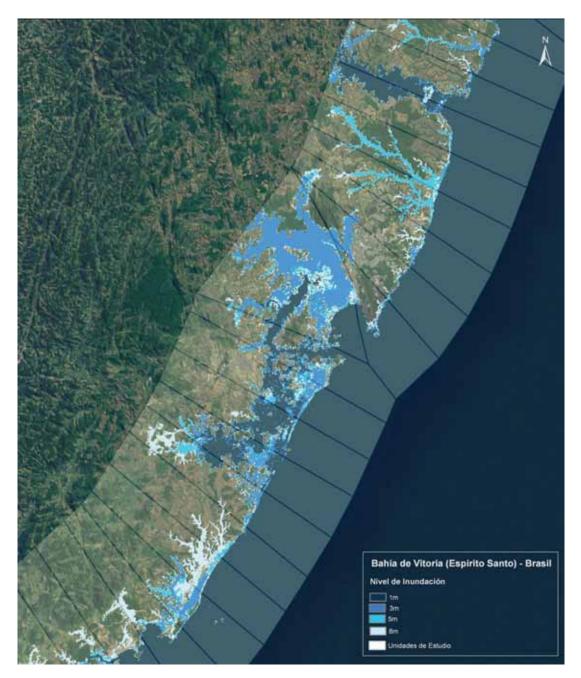


FIGURA 2.68
UNIDADES DE ANÁLISIS Y MÁSCARAS DE NIVELES DE 1, 5 Y 10 M
EN LA DESEMBOCADURA DEL RÍO URUGUAY

FIGURA 2.69 NIVELES DE INUNDACIÓN DE 3, 5 Y 10 M Y CAPA DE POBLACIÓN EN LAS UNIDADES DE COSTA EN PUERTO RICO

FIGURA 2.70
NIVELES DE INUNDACIÓN DE 3, 5 Y 10 M Y CAPA DE POBLACIÓN
EN LAS UNIDADES DE COSTA EN LA DESEMBOCADURA DEL RÍO URUGUAY
Y LA CIUDAD DE BUENOS AIRES

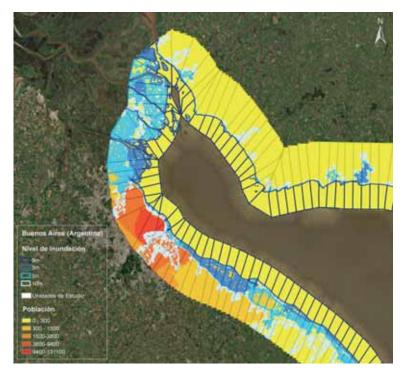
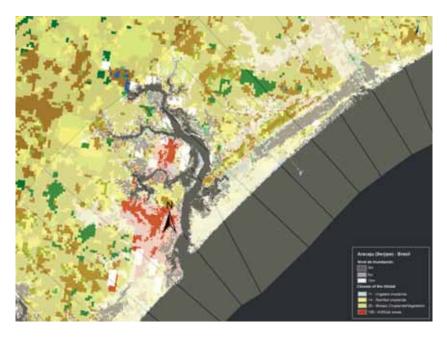



FIGURA 2.71 NIVELES DE INUNDACIÓN DE 3, 5 Y 10 M Y CAPA DE POBLACIÓN EN LAS UNIDADES DE COSTA EN JAMAICA

Fuente: Elaboración propia a partir de datos de STRM-90 y GRUMP-CIESIN.

FIGURA 2.72
NIVELES DE INUNDACIÓN DE 3, 5 Y 10 M Y USOS DEL SUELO (CULTIVOS Y ZONAS URBANAS) EN UN TRAMO DE LA COSTA DE BRASIL-ARACAJU

Fuente: Elaboración propia a partir de datos de STRM-90 y Usos de suelo.

FIGURA 2.73
NIVELES DE INUNDACIÓN DE 3, 5 Y 10 M Y USOS DEL SUELO (CULTIVOS Y ZONAS URBANAS) EN UN TRAMO DE LA COSTA DE BRASIL-BAHÍA GUARATUBA

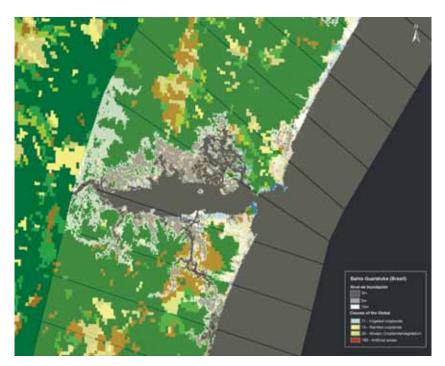


FIGURA 2.74
NIVELES DE INUNDACIÓN DE 3, 5 Y 10 M Y USOS DEL SUELO (CULTIVOS Y ZONAS URBANAS) EN LAS ISLAS SAINT KITTS Y NEVIS

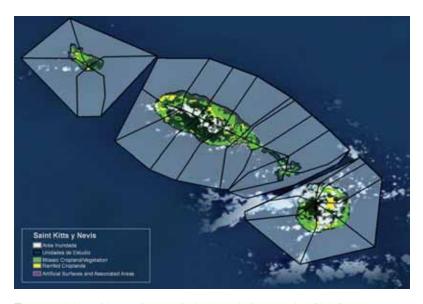


FIGURA 2.75 NIVELES DE INUNDACIÓN DE 3, 5 Y 10 M Y USOS DEL SUELO (CULTIVOS Y ZONAS URBANAS) EN ARUBA

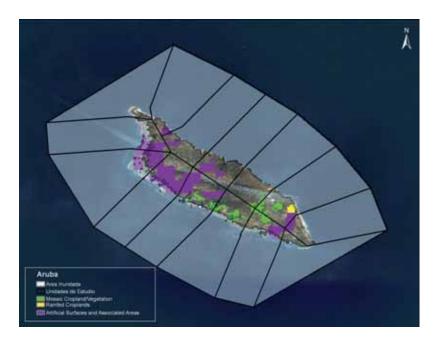


FIGURA 2.76
NIVELES DE INUNDACIÓN DE 3, 5 Y 10 M Y USOS DEL SUELO
(CULTIVOS Y ZONAS URBANAS) EN MARTINICA

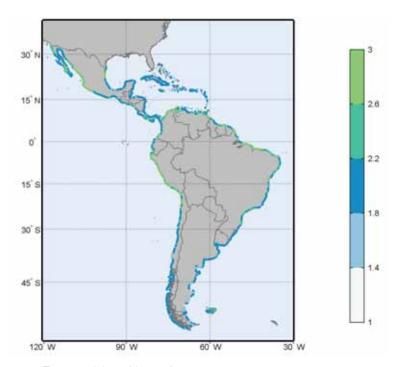


FIGURA 2.77
NIVELES DE INUNDACIÓN DE 3, 5 Y 10 M Y USOS DEL SUELO (CULTIVOS Y ZONAS URBANAS) EN PUERTO RICO

La figura 2.78 muestra el índice de vulnerabilidad ecológica medio entre las cotas 0 y 10 m para las unidades de estudio agregadas, Se puede observar que el índice de vulnerabilidad presenta los mayores valores en la costa Norte de Brasil, hasta el Este de Venezuela (República Bolivariana de) y costa de Perú y Oeste de México.

FIGURA 2.78 ÍNDICE DE VULNERABILIDAD ECOLÓGICA EN AMÉRICA LATINA Y EL CARIBE (VALOR MEDIO ENTRE LAS COTAS 0 Y 10M)

Fuente: Elaboración propia.

4.3 Características de las playas en América Latina y el Caribe

Debido a la importancia de las playas dentro de la franja costera, se dedica este apartado a una descripción de diversas variables e información con el fin de proporcionar una visión de la vulnerabilidad de las mismas en la región.

Parte de la información recogida de imágenes de satélite versa sobre las características de la costa, en general y de las playas en particular. Así, se ha registrado en cada unidad de estudio la longitud de playa, el tipo de las mismas atendiendo a si es rectilínea, confinada o de tipo puntal, la longitud de ciudad colindante con el mar, la parte común de ambas (ciudad y playa) si fuera el caso, la longitud de los diques y la longitud de desembocaduras, aunque ésta supone una dinámica especial de carácter local que se escapa del alcance de este estudio –cuadro 2.45 y cuadro 2.46–.

CUADRO 2.45
CARACTERÍSTICAS DEL FRENTE COSTERO EN AMÉRICA LATINA Y EL CARIBE.
CLASIFICACIÓN POR PAÍS

País	Longitud de playa (kms)	Longitud de Ciudad con frente marítimo (kms)	Longitud de Playa y Ciudad (kms)	Longitud de Diques (kms)	Nº de Polígonos	Longitud de Desembocaduras (kms)
MEX	7 378,30	422,64	322,16	31,79	2 201	191,78
BRA	5 758,81	1 449,66	1 387,57	28,85	1 631	293,24
ARG	3 439,81	197,66	149,92	3,4	1 247	15,84
CHL	2 078,11	250,09	158,39	7,45	2 341	15,31
CUB	2 048,91	156,05	122,65	0,65	950	10,88
BHS	1 895,32	147,45	128,38	1	671	6,19
PER	1 406,59	126,18	113,82	3,41	484	2,65
VEN	1 263,96	284,88	221,95	4,97	573	6,39
COL	1 101,14	116,85	106,98	0	450	105,90
PAN	922,42	49,62	22,79	8,68	451	56,21
HND	879,43	54,82	52,36	0	196	283,63
NIC	758,40	11,76	11,20	0	178	18,37
HTI	640,96	124,11	90,50	0	288	1,90
DOM	636,20	120,75	76,02	2	264	1,40
ECU	521,67	75,05	51,77	1,24	407	58,78
URY	481,87	145,05	126,91	8,3	140	2,10
CRI	461,49	34,27	32,47	0,45	206	12,60
GUY	388,14	78,69	78,69	0	91	17,56
PRI	301,34	118,34	90,60	0,7	114	0,50
GTM	282,94	4,30	0,16	0	77	0,51
TTO	249,01	38,36	21,14	0,5	99	0,00
JAM	235,34	207,95	115,04	0,3	122	0,29
SLV	221,76	12,38	4,93	0	61	12,72
BLZ	205,27	46,63	22,13	0	118	3,93
TCA	158,99	30,47	25,87	0	72	0,00
GUF	140,60	20,26	20,26	0	68	2,10
USA	139,67	10,49	10,49	0	32	0,67
FLK	121,76	3,10	0,00	0	439	3,03
CYM	119,91	45,62	34,87	0	39	0,20
SUR	111,50	2,60	2,60	0	75	9,97
ATG	80,90	8,20	7,50	0	28	0,00
GLP	79,76	57,11	35,80	0	58	0,30

(conclusión)

País	Longitud de playa (kms)	Longitud de Ciudad con frente marítimo (kms)	Longitud de Playa y Ciudad (kms)	Longitud de Diques (kms)	Nº de Polígonos	Longitud de Desembocaduras (kms)
VIR	65,22	22,30	18,20	0,9	31	0,00
MTQ	61,20	57,38	29,60	0	40	0,00
ANT	61,09	25,09	16,70	0	46	0,00
VGB	58,32	3,00	3,00	0	29	0,00
KNA	55,81	12,35	10,70	0	28	0,00
AIA	52,15	33,30	26,95	0	28	0,00
DMA	49,22	15,00	10,80	0	25	0,00
BRB	45,13	40,92	24,50	0,85	19	0,00
LCA	30,84	8,70	7,70	0	22	0,00
GRD	29,70	10,20	8,30	0	16	0,00
VCT	27,47	5,70	3,40	0	15	0,00
ABW	26,01	22,50	16,00	0	14	0,00
MSR	9,50	2,50	2,50	0	9	0,00

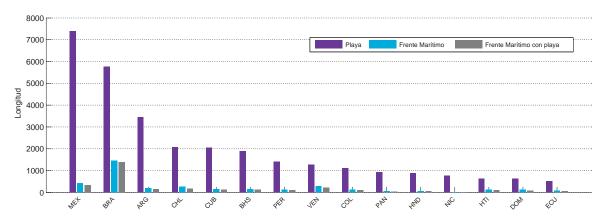
Fuente: Elaboración propia.

CUADRO 2.46
TIPOS DE PLAYAS. CLASIFICACIÓN POR PAÍS

	Longitud	Le	ongitud de	playa por tipo	(kms)	Nº de tramos con playa por tipos				
País	de playa (kms)	x1	x2	Rectilínea	Puntal	x1	x 2	Rectilínea	Puntal	
MEX	7 378,3	381,3	416,2	6 101,5	479,3	104	142	1 370	125	
BRA	5 758,8	308,1	552,6	3 617,3	1 280,9	76	172	784	304	
ARG	3 439,8	102,9	279,6	2 967,3	90,0	39	126	857	32	
CHL	2 078,1	340,8	595,4	979,4	162,6	131	356	288	64	
CUB	2 048,9	623,1	340,0	814,5	271,3	224	156	265	103	
BHS	1 895,3	453,3	232,5	968,4	241,1	121	76	246	66	
PER	1 406,6	39,0	72,5	1287,8	7,4	10	21	276	2	
VEN	1 264,0	323,6	333,7	566,8	39,9	84	106	125	13	
COL	1 101,1	173,7	171,0	612,3	144,1	38	41	125	33	
PAN	922,4	158,5	262,6	333,7	167,5	41	71	80	46	
HND	879,4	88,0	28,8	615,5	147,1	23	6	132	33	
NIC	758,4	39,0	48,6	568,8	102,0	8	13	117	23	
HTI	641,0	118,8	97,7	379,6	44,8	37	54	93	17	
DOM	636,2	129,7	97,9	389,5	19,1	43	43	97	5	

(conclusión)

	Longitud	Lo	ongitud de	e playa por tipo	(kms)	Nº de tramos con playa por tipos				
País	de playa (kms)	x1	x2	Rectilínea	Puntal	x1	x2	Rectilínea	Puntal	
ECU	521,7	3,7	98,1	372,4	47,4	1	61	80	13	
URY	481,9	0,0	66,4	347,9	67,6	0	27	88	20	
CRI	461,5	42,5	41,5	287,6	89,9	10	11	62	21	
GUY	388,1	1,2	0,0	347,2	39,7	1	0	70	8	
PRI	301,3	70,9	137,7	86,0	6,7	24	51	21	2	
GTM	282,9	0,0	0,0	278,9	4,1	0	0	59	1	
TTO	249,0	77,9	56,6	114,6	0,0	20	32	24	0	
JAM	235,3	59,8	67,5	101,7	6,4	18	32	29	3	
SLV	221,8	7,6	6,0	192,9	15,3	3	2	42	5	
BLZ	205,3	18,9	69,4	105,3	11,7	6	17	30	6	
TCA	159,0	58,8	12,7	87,5	0,0	16	7	21	0	
GUF	140,6	49,4	6,1	68,8	16,4	10	2	14	4	
USA	139,7	0,0	5,5	125,2	9,0	0	2	28	2	
FLK	121,8	7,1	88,3	24,4	2,0	3	74	11	1	
CYM	119,9	10,4	4,7	96,6	8,1	4	1	29	3	
SUR	111,5	31,6	19,9	46,3	13,7	7	4	11	4	
ATG	80,9	8,1	18,1	51,0	3,7	3	10	12	1	
GLP	79,8	19,7	42,2	17,4	0,5	10	21	6	1	
VIR	65,2	27,2	38,1	0,0	0,0	9	21	0	0	
MTQ	61,2	11,4	47,6	2,2	0,0	6	23	1	0	
ANT	61,1	0,0	7,3	50,3	3,5	0	7	14	1	
VGB	58,3	0,0	30,4	28,0	0,0	0	17	7	0	
KNA	55,8	18,1	21,8	15,8	0,0	6	11	4	0	
AIA	52,2	3,8	47,0	1,4	0,0	1	22	1	0	
DMA	49,2	8,4	34,0	4,8	2,0	4	18	1	1	
BRB	45,1	4,2	31,2	9,7	0,0	2	14	2	0	
LCA	30,8	7,2	23,6	0,0	0,0	4	16	0	0	
GRD	29,7	0,0	26,7	3,0	0,0	0	13	2	0	
VCT	27,5	14,6	8,0	4,9	0,0	3	4	1	0	
ABW	26,0	4,5	6,8	12,8	2,0	1	7	3	1	
MSR	9,5	3,0	6,5	0,0	0,0	1	3	0	0	

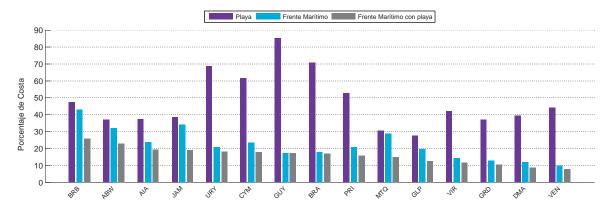

Fuente: Elaboración propia.

Nota: x1-confinamiento rígido en un lateral en la unidad de estudio, x2-doble confinamiento rígido, r-playa rectilínea, p-playa colindante con una desembocadura en la unidad de estudio.

La figura 2.79 muestra los 15 países con mayor longitud de playa, en orden decreciente, distinguiendo la longitud de playa total, la longitud de frente urbano adyacente al mar y la parte común de playa y frente urbano (playa urbana) si la hubiera. México presenta la mayor longitud de playa pero la longitud de costa construida es muy limitada. En este respecto destaca especialmente Brasil con gran parte de costa urbanizada. Además, se da el caso de que más del 95% de la costa construida presenta a la vez playa, lo cual indica que estas playas se pueden considerar como obras de defensa de las ciudades, lo que hace que sean vulnerables frente a una posible erosión de aquellas. La figura 2.80 muestra los 15 países con mayor porcentaje de la costa urbanizado utilizando como indicador para su clasificación los anteriores valores en proporción a la longitud total de costa. Mientras que México y Brasil aparecen en las primeras posiciones por longitud de playa debido a la gran longitud de costa de que disponen, es Barbados el país más afectado en términos proporcionales a su longitud de costa en cuanto a posibles ciudades perjudicadas. En estos países los impactos de las dinámicas costeras pueden tener mayor afección por concentrar gran parte de su población e infraestructuras en ciudades.

FIGURA 2.79 LONGITUD DE PLAYA, FRENTE MARÍTIMO Y LONGITUD COINCIDENTE EN AMÉRICA LATINA Y EL CARIBE. CLASIFICACIÓN POR PAÍS

(Kilómetros)



Fuente: Elaboración propia.

Nota: Países ordenados por longitud de playa.

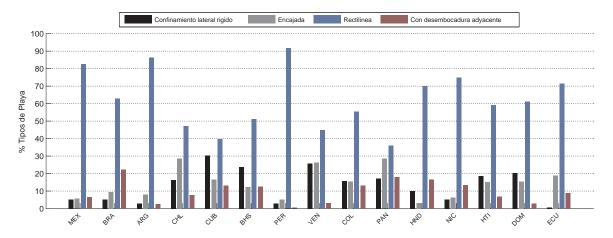
FIGURA 2.80
PORCENTAJE DE COSTA CON PLAYA, FRENTE MARÍTIMO Y PARTE COINCIDENTE RESPECTO AL TOTAL DE COSTA. CLASIFICACIÓN POR PAÍS

(Porcentaje)

Fuente: Elaboración propia.

Nota: Países ordenados por porcentaje de frente marítimo con playa.

Desde el punto de vista de los procesos de erosión de las playas, merece la pena distinguir la distinta configuración de las mismas en los diferentes países. En la figura 2.81 se representan el porcentaje de cada tipo de playa relativo a la longitud total de playas en cada país (15 países con mayor longitud de playas) ordenados de mayor a menor por longitud de playa total. Mientras que las playas rectilíneas estarán afectadas principalmente por cambios en el nivel del mar y la intensidad del oleaje, las que presentan confinamientos rígidos, además, adolecerán de cambios en la dirección del oleaje dominante. Merece la pena destacar el peso proporcional de los tramos con influencia de las dinámicas de desembocaduras, no resueltas en el proyecto por causa de la macro-escala espacial de estudio, en Brasil y Panamá respecto a México y otros países. Asimismo, las playas encajadas, afectadas por dos tipos de erosión, tanto por subida del nivel del mar como cambios en el giro del oleaje, representan una parte significativa de las playas de Chile, Panamá y la República Bolivariana de Venezuela, entre otros.

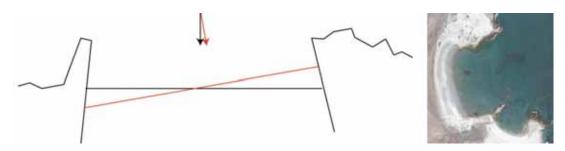

Este análisis representa una cuantificación de la heterogeneidad de las costas en la región, dominando distintos procesos erosivos en distintos lugares.

En este contexto, la definición de las características de las playas presentes en cada unidad de estudio es vital para poder definir la vulnerabilidad de cada tramo de costa, además de poder distinguir a qué tipo de erosión van a estar expuestas.

La tipología de playas en la región es muy heterogénea encontrándose desde playas de árido fino a grueso, pequeñas calas encajadas, arenales de cientos de kilómetros prácticamente ininterrumpidas o playas barreras que separan el mar abierto de lagunas intermareales. Frente a esta diversidad se han analizado las playas asumiendo ciertas hipótesis simplificativas del problema. En primer lugar, se ha supuesto homogeneidad en el diámetro del grano, considerándose tres diámetros representativos, que cubren el rango geológico de diámetros de las arenas, para que los resultados pudieran ser usados en distintas zonas con granulometrías distintas. Además, se ha asumido como simplificación que las playas adoptan un perfil de equilibrio de Dean, independientemente del régimen mareal y de las condiciones dinámicas locales, aceptable a la vista de la escala y alcance de detalle del estudio. Estas hipótesis serían inadecuadas para un análisis a escala local, o de detalle, donde sería necesario una caracterización detallada, tanto de las condiciones de las dinámicas, como de las características concretas de cada playa de estudio. Sin embargo, para una evaluación global estas hipótesis son más que aceptables y suponen una estima del orden de magnitud, y sobre todo, una forma de comparación entre las distintas zonas de la región para determinar cómo los cambios en las dinámicas van a afectar más o menos en cada zona, en igualdad de condiciones.

FIGURA 2.81
DISTRIBUCIÓN DE TRAMOS DE PLAYAS EN LOS PAÍSES DE AMÉRICA
LATINA Y EL CARIBE. CLASIFICACIÓN POR PAÍS

(Porcentaje)



Fuente: Elaboración propia.

Nota: Países ordenados según longitud de playa total.

Respecto a las modificaciones en la planta de equilibrio, cabe distinguir playas donde los procesos sedimentarios se dan en una escala espacial de algunos kilómetros, como es el caso de las denominadas playas encajadas, y en aquellas cuya planta depende del transporte sedimentario en escalas espaciales mayores, como en grandes playas rectilíneas que forman unidades morfodinámicas de varias decenas o incluso centenares de kilómetros. El estudio para estas últimas ha de ser específico para estas unidades morfodinámicas y depende de características locales que definen el transporte litoral de gran escala. Sin embargo, en el caso de las primeras, la planta de equilibrio puede ser estudiado por medio de una aproximación en función del cambio en la dirección del oleaje dominante, que es el factor principal en el cambio del transporte sedimentario, y por ende, del giro de la forma en planta de la playa. La figura 2.82 muestra el esquema de giro de una estas playas, ya que las playas de este tipo se sitúan de forma sensiblemente ortogonal a la dirección dominante del oleaje.

FIGURA 2.82
ESQUEMA DE LA MODIFICACIÓN SIMPLIFICADA DE UNA PLAYA CONFINADA
O ENCAJADA ANTE UN CAMBIO EN LA DIRECCIÓN DOMINANTE DEL OLEAJE
(IZQUIERDA) Y EJEMPLO DE PLAYA ENCAJADA EN LA REGIÓN (DERECHA)

Fuente: Google Earth.

Todos los tipos de playas se verán afectados por el ascenso del nivel del mar y por cambios en la intensidad del oleaje incidente. Además, las grandes playas rectilíneas, sufrirán cambios específicos del conjunto de la unidad morfodinámica (que trasciende varios de los polígonos de estudio) por cambios en el transporte de sedimentos de gran escala, objeto de estudio específico en cada unidad morfodinámica.

Otro de los tipos de playas que se ha analizado es el que presenta dos confinamientos laterales dentro de los límites de la unidad de estudio de 5 km, denominadas en este trabajo playas encajadas. Estas playas presentan la peculiaridad de que el transporte de sedimentos en ellas está delimitado longitudinalmente a la costa por los confinamientos laterales de modo que la forma que adoptan responde a fenómenos de transporte de sedimentos internos a la unidad de estudio. Esta peculiaridad las hace unas candidatas idóneas para ser analizadas mediante el modelo planteado, ya que su comportamiento en planta se puede suponer inicialmente independiente de su comportamiento en perfil. Por ello, en este tipo de playas, se analiza por un lado, su evolución previsible mediante la regla de Bruun y por otro, su variación por giro de la planta para adecuarse a la tendencia de variación de la incidencia del oleaje dominante (dirección del flujo medio de energía del oleaje).

Por otra parte, las playas encajadas, o en otras palabras, las playas con confinamientos laterales, además de sufrir transformaciones por cambios en el nivel del mar y en la intensidad del oleaje, también pueden verse afectadas por un cambio en la dirección de éste, de manera que si el oleaje dominante incidiera desde otra determinada dirección, este tipo de playas se adaptarían provocándose un giro, o basculamiento, de las mismas que provocaría erosión en uno de los extremos y avance en el contrario (para una explicación más detallada consúltese el documento dedicado a los impactos). La figura 2.84 representa el porcentaje de playas en unidades agregadas de 50 km que supone la longitud de playas encajadas. La importancia de estas playas en términos de longitud no es tan significativa como la de las playas rectilíneas, más extendidas en la región pero, sin embargo, su vulnerabilidad frente a la erosión sí lo es ya que pequeños giros en la dirección del oleaje pueden suponer importantes retrocesos en uno de los extremos de las mismas.

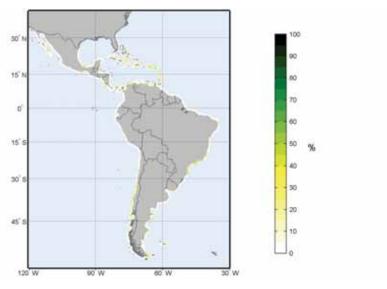
En cuanto a la variabilidad de playas entre países, atendiendo a la longitud de playas –figura 2.79– el país con mayor longitud de playas es México, seguido de Brasil, Argentina, Chile y Cuba.


En un estudio de la erosión en las costas es de vital importancia determinar la configuración que ésta presenta. En los países con costa, gran parte de la misma está urbanizada en los primeros metros desde la línea de costa, con menos posibilidades de un posible retroceso en el caso de que la costa se erosionase que en el caso de costas con playas, sin influencia antropogénica, donde sea posible un retranqueo natural a partir del movimiento tierra adentro del sistema dunar. Por ello, en este documento se ha analizado en cada unidad de estudio de 5 km de ALyC su respectiva longitud con presencia de costa urbanizada de forma consolidada, la longitud de playa y la longitud común de ambas en su caso (playa urbana). En la figura 2.80 y la figura 2.81 se muestra esta información ordenada por longitud de playa y longitud de frente urbano, respectivamente, distinguiendo tanto la longitud de playas, la longitud de ciudad en primera línea de costa, y la parte común de playa y ciudad. Esta información es de gran valor para analizar, no sólo la vulnerabilidad de las costas, sino también para evaluar el riesgo asociado a la erosión. Desde el punto de vista de la longitud total de playas, México, Brasil y Argentina son los países con mayor longitud como ya se ha visto previamente. Sin embargo, de estos tres países, la longitud de frente urbano construido frente a la línea de costa destaca sobremanera el caso de Brasil. Además, la mayor parte del frente marítimo construido coincide con playas, lo cual indica que en la mayoría de los casos, las playas ejercen de obra de defensa frente a las dinámicas marinas protegiendo las construcciones que se disponen tras ellas. Por tanto, en estos casos, la función de las playas es tanto defensiva como recreativa. El país con mayor longitud de costa construida (en primera línea de costa), en términos porcentuales, es Barbados, seguido de Aruba, Anguilla, Jamaica y Uruguay –figura 2.80–. En estos casos, la longitud de frente marítimo urbanizado es del mismo orden que la longitud total del

playa, pero, sin embargo, se dan diferencias al compararlo con la parte común de frente urbano y playa, lo cual indica que existen zonas de la costa donde las construcciones están a salvo de las dinámicas por otros medios (presumiblemente zonas elevadas como acantilados). No obstante, en todos los casos de la figura 2.80 se observa que la mayor parte de la costa urbanizada coincide con playas, lo cual nos da una idea de la importancia de éstas como sistemas de defensa marítima.

La conclusión que se puede extraer del análisis de las figuras 2.80 y 2.81 es que existe una doble dimensión del análisis sobre erosión en la costa en la región. Por un lado, existen países con gran longitud de playas sin actividades urbanas inmediatamente tras de sí, mientras que en otros países, la longitud de frente urbano en primera línea de costa es comparable a la longitud de playas (en gran parte coincidente con zonas urbanizadas). Por tanto, será necesario analizar esta dualidad de funcionalidades en el estudio, contemplando, por un lado, la función de las playas como recurso ecológico y turístico (uso recreativo) y, por otro lado, la función que ejercen como obra de defensa marítima (uso defensivo).

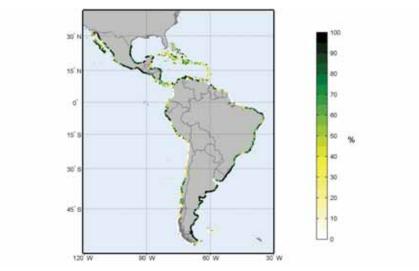
La figura 2.83 representa el porcentaje de tramos de aproximadamente 50 km que supone las playas rectilíneas debido a que es en éstas donde la regla de Bruun resulta ser un correcto estimador de la erosión de largo plazo. Este tipo de playas son vulnerables a erosión por cambios en el nivel del mar y en las condiciones de oleaje, que pueden provocar un retroceso de las mismas con su correspondiente erosión. Como se puede observar, la mayoría de los tramos de playa se pueden considerar en gran parte como rectilíneos. Las playas rectilíneas dominan y configuran la mayor parte de las costas de México, especialmente en el Golfo de México, y desde el Sur de Brasil hasta el Sur del continente, con otras zonas aisladas a lo largo de toda la región de ALyC.


FIGURA 2.83
PORCENTAJE DE COSTA CON PLAYAS RECTILÍNEAS EN UNIDADES DE 50 KM

Fuente: Elaboración propia.

Nota: playas sin ningún confinamiento rígido lateral en las unidades de estudio de 5 km.

FIGURA 2.84
PORCENTAJE DE COSTA CON PLAYAS ENCAJADAS EN UNIDADES DE 50 KM



Fuente: Elaboración propia.

Nota: Playas con confinamiento rígido por ambos laterales dentro de una misma unidad de estudio de 5 km.

Las playas encajadas dominan en las costas de Chile, Sur de Brasil e islas caribeñas. Si bien todas se pueden analizar como confinadas en una unidad de estudio, en Chile los confinamientos son rígidos, normalmente acantilados y rocas elevadas, mientras que en el Caribe suelen ser accidentes del terreno menos pronunciados que configuran un cambio en la orientación de la costa. No obstante y en cualquier caso, la erosión inducida por giro del oleaje incidente deberá ser tenida en cuenta (véase documento 3 del estudio relativo a los impactos del cambio climático en la costa de ALyC).

FIGURA 2.85
PORCENTAJE DE PLAYA QUE NO SE ENCUENTRA ADYACENTE
A UNA DESEMBOCADURA EN UNIDADES DE 50 KM

Fuente: Elaboración propia.

Es importante destacar que la parte de la costa sedimentaria cercana a una desembocadura de una corriente fluvial estará localmente influenciada por la misma y requiere de un estudio más detallado ya que depende fuertemente de las características físicas y dinámicas de cada localización (anchura de bocana, prisma de marea que depende de la orografía del estuario, caudal del río, dinámica del oleaje, etc.). En estos casos la dinámica es más compleja y requiere un análisis de mayor resolución (topográfico). No obstante, los impactos de erosión pueden ser de signo y magnitud distintos a los contemplados en los tramos de playa no influenciados por las desembocaduras. La figura 2.85 muestra el porcentaje de costa en cada unidad agregada que no se encuentra cercana a una desembocadura. Como se puede observar, la inmensa mayoría de los tramos con playas no se encuentran en esta situación y por ello el análisis de playas se puede reducir a las rectilíneas y encajadas en una aproximación de macroescala como las que nos ocupa en la región. En definitiva, se puede afirmar que la presencia de influencias locales es minoritaria frente a la totalidad de tramos en la región.

4.4 Análisis de la vulnerabilidad de las costas de América Latina y el Caribe frente al cambio climático

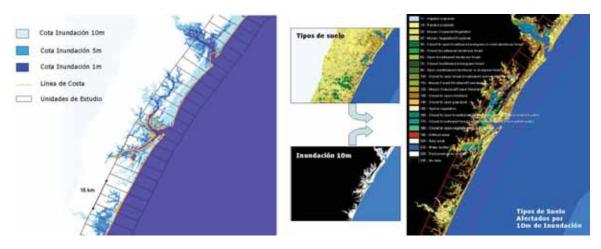
4.4.1 Cálculo de la vulnerabilidad de la costa ante inundación

Una vez planteada la metodología general para la estimación de la vulnerabilidad de la costa ante el cambio climático, en este apartado se presenta su aplicación al cálculo de la vulnerabilidad ante la inundación. Como se ha visto, la expresión general propuesta para el cálculo de la vulnerabilidad, depende del valor intrínseco de los ecosistemas, V_{nm}^{ECO} , y de la valoración socioeconómica que se realice de éstos, D_{nm}^{ECO} , y de las actividades humanas, D_{nm}^{SE} , esto es

$$V_{nm} = V_{nm}^{ECO} \left[V_{nm}^{SE} \right] = V_{nm}^{ECO} \left[D_{nm}^{ECO} + D_{nm}^{SE} \right]$$
 (2.12)

En el caso de que la valoración económica de los ecosistemas se realice por Constanza y otros (1997) u otro criterio donde la ponderación relativa de los ecosistemas entre sí se tenga en cuenta, se puede prescindir del factor de vulnerabilidad ecológica adimensional (V_{nm}^{ECO}) en la expresión (2.10) que busca dar peso a la riqueza ecológica de unos polígonos respecto a otros. En cualquier caso, el índice ecológico calculado constituye una herramienta para la intercomparación de polígonos entre sí según su importancia ecológica entre las cotas 0 y 10 m.

La inundación de la costa puede ser causada por la subida del nivel medio del mar (NMM) y entonces será permanente, o por eventos extremos, en cuyo caso la inundación será temporal (eventos extremos esporádicos de inundación). La vulnerabilidad de la costa frente a la inundación costera se ha definido mediante la recopilación de las variables consideradas entre las cotas 0 y 10 m en cada polígono de estudio (aprox. 5 km).


El cálculo de la vulnerabilidad de la costa ante este impacto se ha realizado aplicando la ecuación (2.10) asumiendo que se produce la pérdida de terreno de forma permanente y, por lo tanto, obteniendo V_{nm}^{ECO} , D_{nm}^{ECO} de los ecosistemas, y D_{nm}^{SE} de las actividades socioeconómicas que tienen lugar en cada una de las celdas, n, del tramo de costa, m, inundado o erosionado. Para calcular la vulnerabilidad de la costa en el caso de que la inundación sea temporal (o no permanente), se estima ésta como un porcentaje de la vulnerabilidad por inundación total.

La determinación del coeficiente a es altamente compleja y requiere de estudios más detallados. Este coeficiente puede ser modificado por el gestor en función del conocimiento, que tenga, a priori, sobre los efectos de la inundación temporal de la costa.

En los resultados digitales del proyecto (visor) se proporcionarán los valores de todas estas variables.

Para identificar el territorio afectado por la inundación se han generado en SIG, diez máscaras entre las cotas +1 y +10 m del área de estudio tal y como ha sido explicado en el apartado dedicado a la metodología SIG utilizada. La figura 2.86 muestra un ejemplo con los niveles de inundación de 1 m, 5 m y 10 m para una sección de costa.

FIGURA 2.86 COTAS DE INUNDACIÓN Y UNIDADES DE ESTUDIO (IZQUIERDA) Y ESQUEMA DE ANÁLISIS DE LA INFORMACIÓN SIG (DERECHA)

Fuente: Elaboración propia.

Para cada cota de inundación y en cada unidad de estudio se ha obtenido, por un lado, la superficie afectada de cada tipo de ecosistema existente en la unidad y, por otro, el número de habitantes residentes en el área inundada, según la información de las bases de datos utilizadas (véase apartado de metología SIG).

Una vez identificados los ecosistemas y la población-PIB afectada en cada unidad de estudio, se puede calcular la vulnerabilidad de este tramo ante inundación, V_m , como

$$V_{m} = \sum_{n=1}^{N_{nm}} V_{nm} \tag{2.13}$$

Donde V_m se calcula como se expresa en la ecuación (2.12), utilizando la metodología presentada en los apartados anteriores.

4.4.2 Cálculo de la vulnerabilidad de las playas frente a la erosión

En el estudio se analiza la erosión en las playas debida al cambio en las dinámicas del oleaje y la subida relativa del nivel del mar. Debido a este impacto, las playas modificarán su planta y su perfil de forma que se sitúen en un equilibrio dinámico respecto a las nuevas condiciones hidrodinámicas. Esta respuesta de las playas provocará zonas de erosión y otras de sedimentación, tanto en el perfil como en la planta.

Las funciones principales de una playa son básicamente tres: (1) ecosistema; (2) uso recreativo; (3) defensa de la costa. Por lo tanto, la vulnerabilidad de estos elementos de la costa (playas) frente a la erosión, deberá representar el impacto que la erosión producirá sobre esas tres funciones específicas.

Observando la expresión general, dada en la ecuación (2.12), la vulnerabilidad de cada una de las tres funciones mencionadas queda representada mediante los indicadores propuestos: V_{nm}^{ECO} , D_{nm}^{ECO} y D_{nm}^{SE} . Sin embargo, la aplicación de (2.12) a las playas requiere realizar varias consideraciones específicas.

Datos

Como se ha explicado anteriormente, ante la no disponibilidad de información sobre la configuración y tipos de playas en ALyC, ha sido necesario identificar ciertas características de las mismas mediante imágenes de satélite en Google-Earth. De esta forma, se ha distinguido a las playas en cuatro tipologías morfodinámicas: encajadas por ambos lados, encajadas por un solo lado, rectilíneas y puntales.

Pese a que la variabilidad entre el diámetro de arena en las playas de ALyC es manifiesta, ante la insuficiencia de información al respecto, en este estudio se han considerado tres diámetros representativos y homogéneos para toda la región, cubriendo el rango geológico de las arenas. Esta simplificación se considera suficiente en términos de intercomparación del potencial de daño, dentro del alcance del estudio.

En la erosión costera, a esta escala, no se ha incluido la influencia de los aportes sólidos de los ríos. El estudio se centra en los forzamientos oceanográficos. Sin embargo, estudios como el de Zhang y otros (2004) justifican la regla de Bruun como indicador del retroceso de la línea de costa en un horizonte de cambio climático para los tramos de costa con ausencia de transporte longitudinal significativo.

Función ecosistema

Como ya se ha comentado, V_{nm}^{ECO} valora el valor intrínseco del ecosistema mediante unos índices que indican protección, singularidad y sensibilidad. Sin embargo, las bases de datos de las cuales se han obtenido estos índices no incluyen las playas y el análisis de los posibles ecosistemas afectados por la erosión de cada playa requiere de un detalle que se escapa del alcance de este estudio por lo que no es posible valorar V_{nm}^{ECO} en este caso.

Uso recreativo

El índice D_{nm}^{ECO} basado en Constanza y otros (1997) valora los servicios que proporciona un ecosistema. Sin embargo, en el trabajo de Constanza y otros (1997) las playas no aparecen diferenciadas como tales, sino que se incluyen en el bioma denominado "costero (coastal)" al cual se le asigna un valor general por uso recreativo. En este estudio, para analizar este aspecto de forma más específica, la vulnerabilidad de este uso se va a incluir a través del indicador $D_{nm,rec}^{SE}$.

En estudios recientes sobre el valor de las playas según su uso (Yepes y Medina, 2005), generalmente, se asocia a cada playa los usuarios que pueden desplazarse a ella en un radio de 20

minutos. Ante la insuficiencia de datos para determinar de esta manera el área de influencia de las playas, se ha considerado adecuado valorar las playas de cada unidad de estudio en función de la población que reside en los 5 km inmediatos detrás de la línea de costa. Esta distancia se considera suficiente para cubrir zonas rurales y la mayor parte de la zona marítima de zonas urbanas consolidadas (para obtener un mayor rigor, y especialmente en vista de la importancia turística de algunos países de la región, sería necesario incluir el efecto del turismo extranjero en esta valoración).

Con esta aproximación, $D_{nm,rec}^{SE}$ representa la vulnerabilidad del uso recreativo frente a la erosión, y se calcula como el PIB asociado a la población en una franja de 5 km desde la línea de costa (US\$/cápita x Nº personas). A partir de la longitud de playa y una anchura media representativa (medida a través del visor Google Earth) se pueden determinar los dólares por m² de playa.

Debido a la componente de valoración social de una playa por su uso recreativo, parece lógico suponer un valor distinto para el metro de playa perdido por erosión que para el ganado por acreción. Con este objetivo, para valorar la superficie perdida, se supondrá que tiene el valor calculado anteriormente, mientras que si se gana superficie, el valor estará minorado por un coeficiente, k=0,5, ya que la pérdida de playa tiene una repercusión social y económica mayor que la ganancia de superficie. Este factor es otro elemento que el gestor, en función de motivos socioculturales o físicos, podría ajustar en cada caso concreto.

Función de defensa de la costa

A la escala de trabajo de este estudio, tan sólo es posible determinar el efecto de la erosión sobre la función de defensa que ejercen las playas, en la medida en que protegen zonas urbanizadas consolidadas. Para ello, se ha medido la longitud de frente marítimo urbano en cada unidad de estudio y, en la franja de terreno delimitada por el frente urbano y los 5 km desde la línea de costa, se calcula $D_{nm,def}^{SE}$ como el PIB asociado a la población en esa superficie.

Por lo tanto, teniendo en cuenta las consideraciones anteriores la vulnerabilidad de las playas se ha estimado mediante dos índices:

$$V_{nm} = \left[D_{nm,rec} + D_{nm,def}\right] \tag{2.14}$$

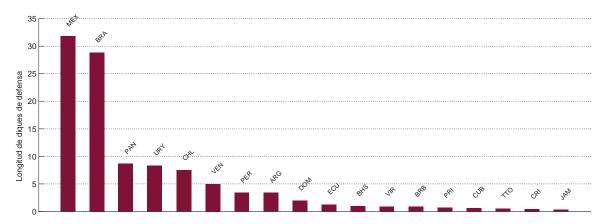
Donde $D_{nm,rec}^{SE}$ valora la vulnerabilidad del uso recreativo-turístico y $D_{nm,def}^{SE}$ representa la vulnerabilidad de la función defensa de costa.

4.4.3 Cálculo de la vulnerabilidad de las infraestructuras portuarias

Como ya se ha mencionado, en este estudio se analiza el impacto del cambio climático en la fiabilidad y la estabilidad de las infraestructuras portuarias.

Para ello se ha considerado que las obras marítimas cumplen, fundamentalmente, con dos funciones: (1) defensa y (2) actividad portuaria. Ambas funciones están relacionadas con actividades socioeconómicas por lo que la vulnerabilidad de cada puerto, p, se ha estimado mediante la expresión:

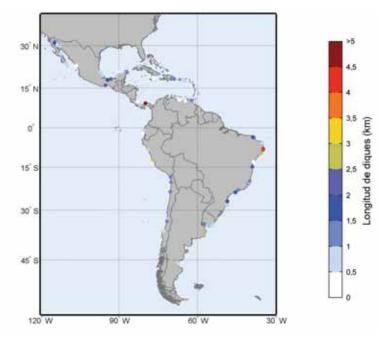
$$V_p = V_{p,op} + V_{p,fb} = D_{p,op}^{SE} + D_{p,f}^{SE}$$
 (2.15)


A continuación, se explica cómo se ha obtenido la vulnerabilidad para cada una de las funciones, fiabilidad ($V_{p,fb} = D_{p,f}^{SE}$) y operatividad ($V_{p,op} = D_{p,op}^{SE}$).

Fiabilidad de las obras de defensa

Para analizar el riesgo de un elemento es necesario identificar la exposición del mismo ante la amenaza. En el caso de las obras marítimas, se ha escogido la longitud de los diques de protección como variable que representa la exposición ante el efecto del clima marítimo. Esta información ha sido obtenida a través de medidas desde imágenes de satélite por medio de Google-Earth para todos los países de estudio (véase, como ejemplo, figura 2.87).

FIGURA 2.87 LONGITUD DE DIQUES IDENTIFICADOS EN AMÉRICA LATINA Y EL CARIBE. CLASIFICACIÓN POR PAÍS


(Kil'ometros)

Fuente: Elaboración propia.

Parte de la información recogida de imágenes de satélite ha sido la longitud de obras de defensa en puertos de la región. La figura 2.88 muestra la longitud de los diques encontrados que será analizada en los impactos en las obras marítimas. Estos diques sirven de defensa frente al oleaje en los puertos y la vulnerabilidad de éstos será mayor si existe mayor longitud susceptible de verse dañada.

FIGURA 2.88
LONGITUD DE LOS DIQUES DE ABRIGO DE LOS PUERTOS
IDENTIFICADOS EN AMÉRICA LATINA Y EL CARIBE
(Kilómetros)

Fuente: Elaboración propia.

El grado de vulnerabilidad de los diques de defensa de los puertos, $D_{p,fb}^{SE}$, se ha evaluado distinguiendo entre el valor de reparación de los diques de puertos de cada nivel de la clasificación, bajo el supuesto de destrucción total por excedencia de la acción de cálculo. En este caso, la acción de cálculo es la altura de ola asociada a un cierto periodo de retorno (R=500 años) utilizada usualmente en la ingeniería portuaria. Con base en las conclusiones de expertos en obras marítimas consultados, los valores medios recomendados para cada caso han sido los que se muestran en el cuadro 2.47. Los valores estimados son una aproximación a la valoración de los costes de reparación de los diques, están basados en su entidad y corresponden a considerar: (1) una reparación en el manto de protección de 5 m de anchura a la cota +10m, de escolleras de 2,6 t/m3 con una porosidad de 0,5, a un precio de 35US\$/ m³ de escollera marítima colocada con grúa y (2) recrecimiento de la coronación de 1 m de cota por 5 m de anchura, de hormigón a un precio de 60 US\$/m³.

En el caso de los puertos no incluidos en el ranking de los 100 de mayor tráfico (CEPAL), o de nivel II, se considera un 50% del precio de reparación de los anteriores.

CUADRO 2.47 VULNERABILIDAD DE LOS DIQUES DE DEFENSA DE LOS PUERTOS

Nivel del puerto	$V_{p,fb} = D_{p,f}^{SE} $ (US\$/m)
I (perteneciente al ranking 100 (CEPAL)	[2275+300 = 2575 ~ 2600]
II (resto medidos en Google-Earth)	[0,5 x 2600]

Fuente: Elaboración propia.

Operatividad de los puertos

La exposición del puerto a una parada operativa viene dada por la duración de las condiciones de oleaje que suponen la limitación para que la actividad portuaria sea practicable por condiciones de navegación en el acceso al puerto o rebase sobre las obras de defensa.

Nótese que si bien la fiabilidad se valora tanto en los puertos donde se dispone de datos de dique, medidos a través de Google-Earth (apartado dedicado a la metodología), como en los 100 puertos más importantes de ALyC según las estadísticas de CEPAL, en el caso de la operatividad, tan sólo es posible hacerlo para estos últimos, ya que se carece de información de producción mercantil en el resto de los puertos.

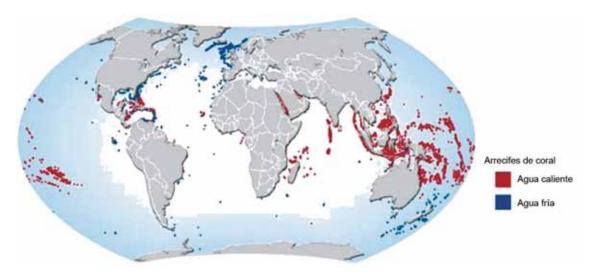
Además, en una prospección de operatividad se debería analizar tanto el valor económico generado por la actividad mercantil de la mercancía de por sí, como el valor económico de las actividades o servicios portuarios relacionados con el transporte y el cambio modal. En este estudio, ante la falta de información sobre los servicios portuarios, se evaluará la operatividad teniendo en cuenta exclusivamente el valor económico de la mercancía (medido en TEUs y toneladas).

Por tanto, la vulnerabilidad de los puertos ante las paradas de actividad, $V_{p,op}$, se puede determinar en función del valor de la actividad económica que cada puerto desarrolle. Ya que se han clasificado los puertos en un ranking según el número de TEUs anuales, NTEUs, se puede determinar la proporción de actividad económica que supone la parada operativa mediante la siguiente expresión:

$$V_{p,op} = D_{p,op}^{SE} = [N/(24*365)][NTEUs/a\tilde{n}o][\hat{U}S$/TEU]$$
 (2.16)

Los resultados de la variación en el número de horas de operatividad por estos criterios se incluyen en el documento 3 sobre impactos en las costas.

4.4.4 Vulnerabilidad de los arrecifes de coral


4.4.4.1. Marco de referencia

El análisis sobre corales se ha basado en tres estudios de referencia que definen el análisis y las presiones de los corales en ALyC:

- i) **Donner y otros 2005:** realiza un estudio global de los corales frente a cambios en la temperatura superficial del mar con base en escenarios globales de cambio climático (escenarios del AR4).
- ii) "Reefs at risk in the Caribbean", World Resources Institute, 2005: análisis de las amenazas de los corales en el Caribe frente a diversas causas y presiones antrópicas, incluyendo mapas de estrés y vulnerabilidad actual.
- iii) "In Dead Water", UNEP, 2008: situación de varios ecosistemas y recursos marinos globales, contemplando, entre otros, los corales, sus amenazas y su vulnerabilidad.

Los arrecifes de coral son un hábitat único capaz de sostener una gran biodiversidad y densidad de vida. Generalmente, aparecen en dos ambientes marinos distintos, por lo que se puede distinguir entre: corales de aguas frías y profundas (3-14°C) y corales de aguas cálidas (21-30°C), típicos de latitudes tropicales. En la figura 2.90 se puede observar la distribución mundial de los corales de ambos tipos.

Fuente: United Nations Environment Programme (UNEP, 2008), In Dead Water. Merging of climate change with pollution, over-harvest, and infestations in the world's fishing grounds.

Los corales de aguas frías se han localizado en 41 países del mundo (Freiwald y otros, 2004), pero están distribuidos a lo largo de todos los océanos, en aquellos lugares donde las condiciones ambientales son adecuadas: aguas frías, claras y ricas en nutrientes. La función ecológica de este tipo de corales en las aguas profundas es muy similar a las del otro tipo de corales tropicales: puntos calientes de biodiversidad y zonas de cría, alimentación y cobijo para un vasto número de organismos, incluyendo peces y mariscos que se pescan para consumo humano. Observaciones con vehículos remotos han demostrado que la mayoría de estos corales en las plataformas continentales del Atlántico Norte muestran señales de impacto por técnicas de pesca de arrastre. En algunos de estos lugares, arrecifes que se desarrollaron hace más de 8.000 años han sido completamente destruidos por causas humanas. Este tipo de arrecifes sufren de otro tipo de impactos en mayor magnitud que las potenciales alteraciones ocasionadas por el cambio climático salvo por un posible cambio en las corrientes oceánicas y las zonas de afloramiento.

Sin embargo, los arrecifes de aguas cálidas se pueden encontrar en aguas tropicales poco profundas a lo largo de las islas y continentes. A estos arrecifes se les denomina "bosques tropicales del océano" en alusión a la enorme biodiversidad y cantidad de vida que albergan a su alrededor. Este tipo de corales no sufre los impactos de sus homólogos. Sin embargo, presentan unos rangos de tolerancia muy ajustados a diversas variables como la temperatura del agua, la salinidad, la radiación ultravioleta, la turbidez y la cantidad de nutrientes (Burke y otros, 2002; Wilkinson, 2002; Brown y otros, 2006; UNEP, 2006). Esta sensibilidad a pequeños cambios los hace especialmente vulnerables a cambios derivados del calentamiento global.

Uno de los impactos que pueden sufrir los corales es el blanqueo, derivado del calentamiento global del planeta. El blanqueo ocurre cuando los corales son expuestos repetidamente, o de manera sostenida, a aumentos de temperatura fuera de su tolerancia térmica. Los corales pueden superar estas condiciones temporalmente. Sin embargo si el estrés persiste, los corales perecerán. Una causa bien documentada del blanqueo de los corales es el aumento de la temperatura superficial del mar (SST). Un incremento de la SST de manera prolongada durante los meses más calurosos del verano, tan sólo de

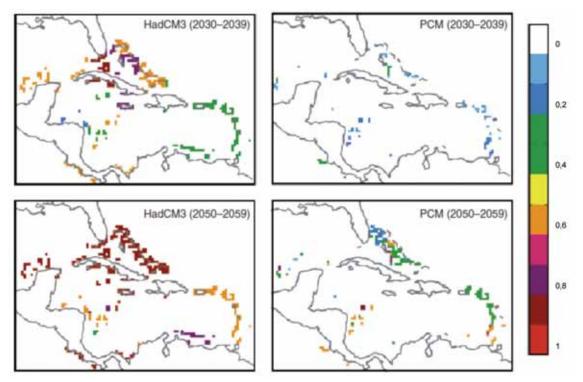
1°C sobre la media mensual, puede generar un evento de blanqueo (Glynn, 1996). Este fenómeno afecta a corales en todo el mundo, con proporciones altas de muerte. La tasa de recuperación es variable entre regiones y depende en gran medida del estado de conservación del arrecife.

4.4.4.2 Perspectiva de cambio en los arrecifes de coral frente al calentamiento global

Se ha realizado valoraciones globales del riesgo de los corales frente al cambio climático, destacando el trabajo de Donner y otros (2005), donde se realiza un análisis global del blanqueo y de las tasas de adaptación térmica necesarias por los corales para soportar el cambio climático.

Estudios en años recientes han alertado sobre que el cambio climático podría incrementar la frecuencia de los eventos de blanqueo del coral y amenazar la vida de los arrecifes de coral a largo plazo. Estas aseveraciones están basadas en aplicar los resultados de proyecciones de modelos globales de circulación océano-atmósfera (GCMs) a las condiciones locales de los corales. El estudio de Donner y otros (2005) supone la primera evaluación global de blanqueo de coral frente al cambio climático, adaptando el método de predicción de blanqueo de la NOAA (Reef Watch) a los resultados de los modelos globales de circulación bajo distintos escenarios de emisiones (IPCC 2007).

Los arrecifes de coral parecen ser uno de los ecosistemas más vulnerables al cambio climático. Aumentos de la temperatura del mar de sólo 1°C sobre el máximo del verano (sobre la estacionalidad) puede provocar el síndrome conocido como blanqueo del coral. Observaciones de campo y laboratorio han demostrado que el blanqueo frecuente o de gran intensidad puede conducir a una reducción en la capacidad reproductiva, crecimiento, resistencia a las enfermedades y/o supervivencia de los corales afectados en grandes escalas espaciales (Hoegh-Guldberg, 1999; Douglas, 2003). Los eventos de blanqueo en las décadas recientes han sido atribuidos a un aumento de las temperaturas superficiales del mar y han hecho que muchos autores especulen que el cambio climático podría conducir a una degradación a largo plazo de muchos de los arrecifes de coral (Glynn, 1991; Brown, 1997; Hoegh-Guldberg, 1999; Wellington y otros, 2001; Sheppard, 2003). Sin embargo, la variabilidad en la respuesta de las especies de coral al estrés de temperatura entre arrecifes y entre océanos parece indicar cierta capacidad de los corales a adaptarse a temperaturas más cálidas que las actuales (Douglas, 2003; Hughes y otros, 2003), aunque este asunto todavía no es aceptado universalmente.


Los resultados indican que el blanqueo podría llegar a producirse con recurrencia anual o bianual para la gran mayoría de los arrecifes de coral del mundo en los próximos 30-50 años, si los corales no llegaran a una tasa de adaptación de 0,2 a 1°C por década. La variabilidad geográfica en la tasa de adaptación requerida encontrada con cada modelo y escenario sugiere que los arrecifes de ciertas zonas, como Micronesia y el Oeste de la Polinesia, podrían verse particularmente afectados por el cambio (Donner y otros 2005).

Para evaluar el impacto sobre los corales de una subida de temperatura del agua, se suele utilizar el índice de acumulación de semanas cálidas de un grado (degree heating weeks, DHWs). Diversos autores indican que el blanqueo aparece para valores del índice DHW con un valor por encima de 4 unidades, mientras que la muerte de los corales ocurre con un valor de DHW por encima de 8 (blanqueo severo) (Liu y otros, 2003; Skirving y otros, 2004).

Donner analizó el blanqueo utilizando la acumulación anual de los meses cálidos de un grado centígrado (degree heating month, DHM) (véase figura 2.90), definiendo una correspondencia entre blanqueo de baja intensidad (DHW>4) para un índice DHM de 1°C (superación de un grado en el año respecto a la estacionalidad esperada) y de blanqueo severo (DHW>8) para un índice DHM de 2°C (superación de 2°C respecto a la estacionalidad media). Esta aproximación permite analizar el blanqueo en la escala mensual en vez de la semanal.

FIGURA 2.90

FRECUENCIA DE SUPERACIÓN DE 1°C EN EL MES CÁLIDO ANUAL (DHM) DURANTE EL PERIODO 2030-2039 Y 2050-2059 PARA CADA UNA DE LAS CELDAS DE 36 KM EN EL CARIBE CON ARRECIFES DE CORAL, EN EL ESCENARIO A2

Fuente: Donner S.D y otros (2005), "Global assessment of coral bleaching and required rates of adaptation under climate change". *Global Change Biology*, 11, 2251–2265, doi: 10.1111/j.1365-2486.2005.01073.

En el estudio de ALyC, se plantea una regionalización de este método aplicándolo a los datos de temperatura y las tendencias calculadas en este estudio, a escala mensual. Se analiza el impacto esperado en los corales de la región de ALyC a partir del análisis de la posible superación del umbral de 1°C a partir del cual se puede considerar que comienza el blanqueo (véase documento 3 dedicado a los impactos).

El análisis de vulnerabilidad de los corales en la región se limita en este caso a la recopilación y sintetización de otros trabajos al respecto en los que hay que destacar dos:

"Arrecifes en peligro en el Caribe", del World Resources Institute (Burke y Maidens, 2005)

"In Dead Water" del United Nations Environment Programme, 2008.

Estos dos estudios reflejan la vulnerabilidad y el grado de amenaza de los arrecifes en la región frente al cambio climático, analizando no sólo factores debidos al cambio climático sino también otros muchos derivados de la sobrepesca, contaminación terrestre, etc.

4.4.4.3 Situación actual y amenazas en los arrecifes de coral del Caribe

Las principales amenazas identificadas en el trabajo del World Resources Institute: "Arrecifes en peligro en el Caribe" (Burke y Maidens, 2005) se toman como punto de partida y marco de referencia del conocimiento previo, antes de valorar la amenaza que sufren los corales por cambio climático.

El estudio realizado por el WRI en el Caribe, establece que "el Índice de Amenaza de Arrecifes en Peligro indica que casi dos tercios de los arrecifes del Caribe están amenazados por el impacto de las actividades humanas" (Burke y Maidens, 2005). El estudio integró en el análisis diversas fuentes de amenaza: desarrollo costero, aporte de sedimentos y contaminación de las cuencas hidrográficas, amenazas con origen en el mar y la pesca abusiva. La distribución del índice integral mostró que casi una décima parte de los arrecifes coralinos están altamente amenazados, una quinta parte lo están en grado medio, y una tercera parte sufren una baja amenaza de degradación. Entre las áreas con un alto nivel de amenaza están el Caribe Oriental, la mayor parte del Caribe Sur, las Antillas Mayores, los Cayos de la Florida, Yucatán, y la zona cercana a la costa del Caribe Occidental y Suroccidental. En estas áreas, la degradación de los corales —incluyendo la reducción de la cobertura de coral vivo y diversidad de especies, y el incremento del recubrimiento de algas— ya ha ocurrido, o probablemente ocurra, en los próximos 5 a 10 años. Amplias extensiones de arrecifes en Las Bahamas, las Islas Turcas y Caicos, los archipiélagos de Colombia y Nicaragua, y algunos arrecifes de Belice, Cuba y México se clasificaron como zonas de baja amenaza con respecto al efecto de las actividades humanas.

A continuación, se hace un breve resumen de las cuatro amenazas regionales analizadas en el estudio de "Arrecifes en Peligro en el Caribe", antes de integrar los cuatro apartados en un índice general de amenaza:

i) Cerca de 36% de los arrecifes caribeños están ubicados dentro de 2 km de distancia de tierras habitadas y por eso son altamente susceptibles a las presiones que se derivan de la actividad humana. Las amenazas relacionadas con el desarrollo costero son, entre otras, daños por dragados, rellenos de tierra, extracción de arena y cal, aumento de sedimentos que incrementan la turbidez, descargas de aguas residuales no tratadas, turismo por daños directos e indirectos (infraestructura turística), etc. Como resultados del análisis, se estima que un tercio de los arrecifes coralinos del Caribe está amenazado por el desarrollo costero. Poco más del 15% se considera dentro del nivel de amenaza alta, y un porcentaje similar, con nivel medio. El impacto del desarrollo costero es notable a lo largo de la costa en una considerable parte de las Antillas Mayores, Caribe Oriental, las Islas de la Bahía (Honduras), a lo largo de los Cayos de la Florida, Yucatán, y el Caribe Sur (véase figura 2.91).

Lar amenazas del desarrollo costero a los arrecifos forme consudat monando asono base la distancia desde cisolades, puertos, ae repuertos y concesso de monando como de facultado de población, execucionad y concesso de como en disease en disea

FIGURA 2.91
MAPA DE ARRECIFES AMENAZADOS POR EL DESARROLLO COSTERO

Fuente: Burke, L. y J. Maidens (2005), *Arrecifes en peligro en el Caribe*, World Resources Institute, Washington, D.C.

estrés. (Ver el Recumbo 3 en el Capitulo 4 y la Tabla AS en el Apéndier A.)

La conversión de tierras a la agricultura incrementa la erosión del suelo y el aporte de sedimentos a la costa, lo que aumenta la turbidez del agua y bloquea la luz necesaria para la fotosíntesis. En áreas donde los terrenos agrícolas se sitúan en pendientes abruptas y fuerte precipitación, la erosión puede ser extrema. Además, la descarga de nutrientes en las aguas costeras es una causa importante de la eutrofización, fomentando el desarrollo de algas frente a los corales. Los sedimentos y la contaminación por fuentes terrestres amenazan a cerca de un tercio de los arrecifes del Caribe. El análisis de más de 3.000 cuencas hidrográficas en toda la región demostró que un 20% de los arrecifes coralinos están bajo un alto nivel de amenaza, y cerca de 15% bajo amenaza media por el daño causado por el aumento de los sedimentos y la contaminación (aproximadamente 9.000 km² de coral están amenazados), derivados de los campos agrícolas y otras modificaciones desde tierra. Se han identificado zonas amenazadas por estas causas en Jamaica, La Española, Puerto Rico, las islas elevadas del Caribe Oriental, Belice, Costa Rica y Panamá (véase figura 2.92).

FIGURA 2.92 MAPA DE ARRECIFES AMENAZADOS POR SEDIMENTACIÓN Y CONTAMINACIÓN DESDE FUENTES TERRESTRES

Fuente:Burke, L. y J. Maidens (2005), *Arrecifes en peligro en el Caribe*, World Resources Institute, Washington, D.C.

- ii) Las amenazas con origen en las actividades humanas en el mar, sobre los arrecifes coralinos se encuentran ampliamente extendidas por todo el Caribe. El indicador del impacto de estas amenazas señaló que cerca del 15% de los arrecifes caribeños está amenazado por las descargas de las aguas residuales y de otros desechos de embarcaciones, las fugas o derrames de instalaciones petroleras, los vertidos de combustible, y los daños producidos por varamientos y anclajes. La amenaza se considera relativamente alta en muchas de las islas del Caribe Oriental, Bermuda, Puerto Rico, Jamaica, Panamá, Aruba y las Antillas Neerlandesas.
- iii) La pesca abusiva amenaza a más del 60% de los arrecifes coralinos caribeños. La pesca por encima de niveles de explotación sostenible afecta a los arrecifes coralinos al alterar su balance ecológico. La extracción de peces herbívoros (consumidores de algas) facilita el recubrimiento de los arrecifes por algas. En toda la región se han observado reducciones en la cobertura de coral vivo y un aumento en el recubrimiento por algas. El análisis reveló que cerca de un tercio de los arrecifes caribeños están dentro del nivel de amenaza alta por la presión de la sobrepesca, y cerca de 30% en el nivel de amenaza media. La amenaza fue considerada como alta en casi todas las plataformas estrechas y cercanas a núcleos de población. La presión pesquera es inferior en Las Bahamas, donde la población es menor, en el Caribe Occidental y Suroccidental, y en Cuba, donde muchos arrecifes están alejados de la isla principal.
- iv) A su vez, merece la pena resaltar en el marco de referencia sobre riesgos de corales en la región, la conclusión del estudio de que la gestión ineficaz de las áreas protegidas constituye una amenaza adicional para los arrecifes del Caribe. Con el incremento del turismo, la pesca y otros tipos de uso de las áreas de arrecifes, las áreas marinas protegidas (AMP) se erigen como una herramienta promisoria para salvaguardar estos ecosistemas. En la actualidad están

declaradas más de 285 AMP en todo el Caribe, pero el nivel de protección que ofrecen varía considerablemente. Tan sólo el 6% de las AMP se puede considerar que posee una gestión eficaz, y en el 13% de ellas, ésta es parcial. Las AMP como herramienta de gestión, hoy en día son inadecuadas para gestionar los recursos costeros y proteger los arrecifes coralinos.

Por último, desde el punto de vista económico, el estudio mencionado resalta que "las comunidades costeras y las economías nacionales del Caribe están a punto de sufrir pérdidas económicas considerables si la tendencia actual en la degradación de los arrecifes coralinos continúa". Esta información se acompaña de una valoración económica de algunos de los servicios que los corales proporcionan (pesquerías, recreativo, protección de la costa).

En el estudio de referencia de 2004, también se analizaron las enfermedades observadas y el aumento de temperatura del mar, considerándolos amenazas adicionales a los arrecifes coralinos en toda la región del Caribe. Aunque no fueron evaluados de forma cuantitativa en este proyecto, el calentamiento de la superficie del mar constituye una amenaza adicional en la región del Caribe, ya que los episodios de blanqueamiento de corales —la evidencia más directa del estrés producido por el cambio climático sobre la biodiversidad marina caribeña— están en su apogeo. El estudio menciona que antes de 1983 no se había registrado formalmente ningún incidente de blanqueo masivo en el Caribe. Sin embargo, desde principios de los años 1980, se han reportado más de 500 observaciones (véase la figura 2.93). Una de las incidencias más tempranas ocurrió durante el evento "Niño" de 1982-83 (máximo histórico del índice Niño3), seguido de otro muy importante en 1987 durante otro ENOS.

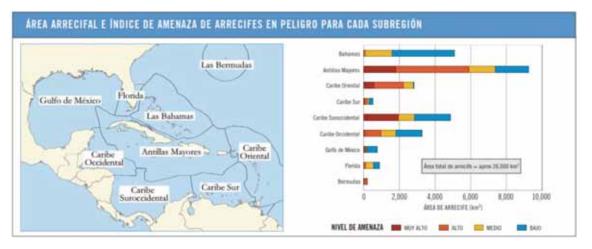
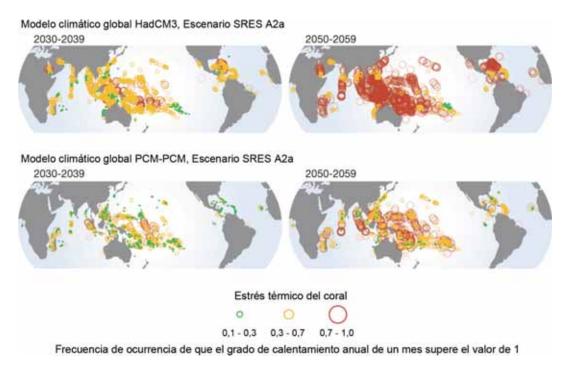

Por tanto, el estudio del WRI analiza los problemas frente al cambio climático como una posible amenaza adicional, con posibles sinergias con las actuales, pero no se aportan datos ni conclusiones al respecto. Este marco de referencia nos deja en una situación en la que se ha identificado el grado de amenaza actual (véanse figura 2.94 y figura 2.95), independiente de aquella derivada del calentamiento global, pero los riesgos asociados al mismo no se han evaluado. Además, existen más arrecifes de coral en la región de ALyC, no sólo los del Caribe, que también es preciso analizar.

FIGURA 2.93
MAPA DE OBSERVACIONES DE BLANQUEAMIENTO DE CORAL EN EL CARIBE

Fuente: Burke, L. y J. Maidens (2005), *Arrecifes en peligro en el Caribe*, World Resources Institute, Washington, D.C.

FIGURA 2.94
MAPA DE SUPERFICIE DE ARRECIFES DE CORAL E ÍNDICE
DE AMENAZA INTEGRAL POR SUBREGIONES

Fuente: Burke, L. y J. Maidens (2005), Arrecifes en peligro en el Caribe, World Resources Institute, Washington, D.C.


FIGURA 2.95 AMENAZA INTEGRADA EN LOS ARRECIFES DEL CARIBE

Fuente: Burke, L. y J. Maidens (2005), Arrecifes en peligro en el Caribe, World Resources Institute, Washington, D.C.

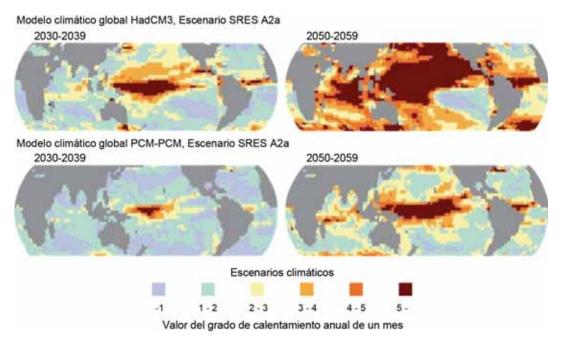

La figura 2.96 y la figura 2.97 muestran los resultados del trabajo de Donner y otros. para dos modelos climáticos globales en dos horizontes de tiempo distintos. Ambos modelos pronostican que ocurrirá un aumento de la recurrencia de episodios con incrementos de temperatura de 1°C en el Caribe y en las costas de Brasil, tal y como ocurre en los resultados basados en tendencias de este estudio (véase documento dedicado a las dinámicas y tendencias en la región).

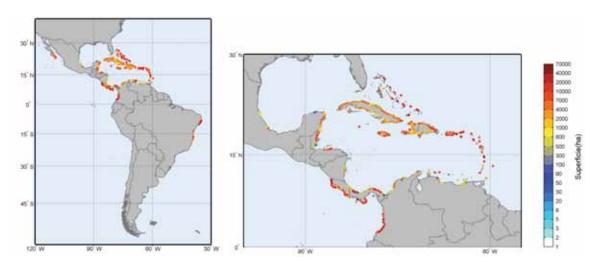
FIGURA 2.96 ÁREAS PREVISIBLES CON TEMPERATURA DEL AGUA POR ENCIMA DE LA NORMAL

Fuente: Donner, S.D. y otros (2005), "Global assessment of coral bleaching and required rates of adaptation under climate change". *Global Change Biology*, 11, 2251–2265, doi: 10.1111/j.1365-2486.2005.01073. Nota: En éstas áreas el blanqueo de corales es probable que ocurra para el escenario A2 con dos modelos diferentes: el PCM (incremento de 1,7°C en 100 años) y el HadCM3 (incremento de 3°C en 100 años) en 2035 (a) y 2055 (b). Ambos modelos prevén eventos severos de blanqueo anuales en más del 80% de los arrecifes de coral del mundo para 2080.

FIGURA 2.97 IMPACTOS EN LOS ARRECIFES DE CORAL POR EL AUMENTO DE LA TEMPERATURA DEL AGUA DEL MAR

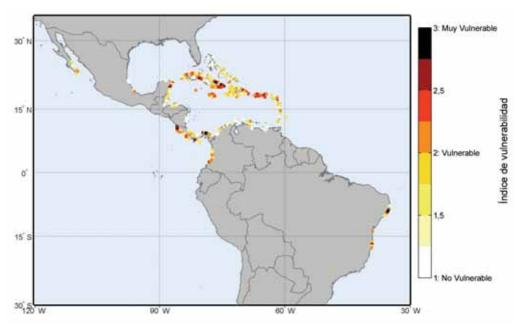
Fuente: Donner, S.D. y otros (2005), "Global assessment of coral bleaching and required rates of adaptation under climate change". *Global Change Biology*, 11, 2251–2265, doi: 10.1111/j.1365-2486.2005.01073. Nota: Cuando los arrecifes quedan expuestos al calor mueren, dejando coral muerto de color blanco, también conocido como blanqueo. Incluso con moderada contaminación, los corales son fácilmente cubiertos por algas, o destruidos por acción del oleaje o las tormentas, dejando tan sólo restos en el fondo.

4.4.4.4 Regionalización de la vulnerabilidad para corales


Con el fin de evaluar el riesgo a la destrucción de los corales por aumento de la temperatura del nivel del mar y mayor frecuencia de los eventos de blanqueamiento, se analizan los corales en ALyC siguiendo una aproximación similar a la de Donner y otros (2005).

Los arrecifes se localizan en la región a partir de los datos del World Resources Institute (WRI) que aportan información sobre si hay presencia o no de corales en las unidades de estudio de 5 km en la región. En la figura 2.99 se identifican las unidades donde se encuentran corales de acuerdo a esta fuente de información. Se observa la presencia masiva en las aguas tropicales del Caribe con arrecifes puntuales en Baja California, Brasil y Norte de Chile.

Siguiendo la aproximación de Donner y otros (2005), se determina el impacto sobre los corales por el ascenso de la temperatura superficial del mar como la probabilidad de exceder un umbral crítico, delimitado en 1°C, y teniendo en cuenta el grado de presión actualmente ejercida sobre los corales en la región (Burke y Maidens, 2005), a partir del cual, de no darse una adaptación térmica de los corales, se produciría la destrucción de los mismos. La aplicación de los distintos términos en la evaluación del riesgo para los corales se describe en el documento de riesgos.


FIGURA 2.98
SUPERFICIE DE LOS ARRECIFES DE CORAL EN LA REGIÓN DE AMÉRICA LATINA Y EL CARIBE (IZQUIERDA) Y ZOOM EN EL MAR CARIBE (DERECHA)

(Hectáreas)

Fuente: Elaboración propia.

FIGURA 2.99 ÍNDICE DE VULNERABILIDAD ASOCIADO A LOS CORALES

Fuente: Elaboración propia.

4.5 Área y población afectada en los deltas más importantes de América Latina y el Caribe

Los deltas configuran uno de los elementos más sensibles ante las amenazas del cambio climático en las costas por ser elementos singulares en la interfaz tierra-mar donde, además, confluye la dinámica fluvial junto con una gran riqueza ecológica y, generalmente, socioeconómica. Todo esto, junto con efectos reforzadores de impacto, como la subsidencia que tiene un efecto adicional a la subida del nivel del mar en estas zonas, hace que estos puntos singulares deban ser estudiados en profundidad. Debido a la escala y el enfoque costero integral del presente estudio no es posible un estudio individualizado de los mismos aunque se puede realizar una regionalización en estas zonas con los resultados obtenidos.

De manera semejante a como se ha procedido para el análisis de la vulnerabilidad por países y el de la distribución espacial, los resultados en los polígonos de estudio (5km) pueden agregarse para otras zonas geográficas de interés. Este es el caso de los deltas que se caracterizan por ser zonas bajas, con cierta subsidencia en mayor o menor medida y con importancia ecológica y/o económica. Si bien es cierto que debido a la escala espacial de los deltas más importantes en ALyC sería necesario un estudio en detalle de los mismos, puesto que el límite en tierra de las unidades de estudio no alcanza a cubrirlos completamente (su diseño responde al análisis de los impactos costeros específicamente), los datos recogidos en los mayores deltas pueden ser orientativos de la vulnerabilidad de cada uno. Los deltas contemplados en este análisis han sido: delta del río San Francisco, río de la Plata, Orinoco, Magdalena, Grijalva, Atrato y Amazonas.

La subida del nivel del mar puede afectar con mayor severidad a las zonas de desembocadura de los grandes ríos de ALyC, ya que los deltas son formaciones de escasa elevación con una predominancia de zonas llanas. Por ello, se han estudiado el área inundada y población afectada como consecuencia de una subida del nivel del mar hasta la cota 1 m, que representa un escenario promedio, y hasta la cota 2 m, que constituye un valor del lado de la seguridad.

A partir del modelo digital del terreno (MDT) de ALyC se han calculado polígonos de inundación hasta las cotas 1 y 2 m que quedan comprendidos en una franja de aproximadamente 20 km tierra adentro desde la línea de costa y se han asociado al delta correspondiente. Así, para cada uno de los deltas, se ha calculado la extensión de la zona inundada en ambas situaciones de nivel de inundación y la población que se vería afectada. El siguiente cuadro recoge los valores obtenidos para cada uno de los deltas analizados.

CUADRO 2.48 ÁREA Y POBLACIÓN EN LOS DELTAS MÁS IMPORTANTES DE AMÉRICA LATINA Y EL CARIBE HASTA LAS COTAS 1 Y 2 M

DELTAS	Entre las cotas 0 y 1 m		Entre las cotas 0 y 2 m	
	Área inundada (Ha)	Población afectada (habs.)	Área inundada (Ha)	Población afectada (habs.)
San Francisco	3 403,62	60 516	12 005,84	108 279
Río de la Plata	79 824,22	103 180	130 481,38	148 472
Orinoco	3 454,77	339	6 373,20	365
Magdalena	16 901,40	103 962	36 292,86	128 334
Grijalva	28 928,93	27 490	6 5401,78	37 897
Atrato	5 588,19	6 894	17 761,60	8 131
Amazonas	7 353,99	103 482	14 382,73	103 668

Fuente: Elaboración propia a partir de datos STRM-90 y GRUMP-CIESIN.

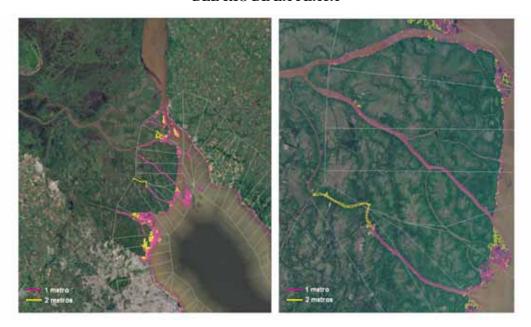

Las siguientes figuras muestran las isolíneas de nivel para las cotas 1 y 2 metros en cada uno de los deltas estudiados, que representan el alcance de las situaciones de inundación.

FIGURA 2.100 ISOLÍNEAS DE NIVEL PARA LAS COTAS 1 Y 2 M EN EL DELTA DEL RÍO SAN FRANCISCO

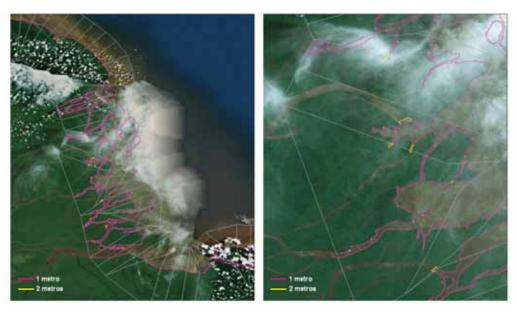

Fuente: Elaboración propia a partir de datos de STRM-90.

FIGURA 2.101 ISOLÍNEAS DE NIVEL PARA LAS COTAS 1 Y 2 M EN EL DELTA DEL RÍO DE LA PLATA

Fuente: Elaboración propia a partir de datos de STRM-90.

FIGURA 2.102 ISOLÍNEAS DE NIVEL PARA LAS COTAS 1 Y 2 M EN EL DELTA DEL RÍO ORINOCO

Fuente: Elaboración propia a partir de datos de STRM-90.

FIGURA 2.103 ISOLÍNEAS DE NIVEL PARA LAS COTAS 1 Y 2 M EN EL DELTA DEL RÍO MAGDALENA

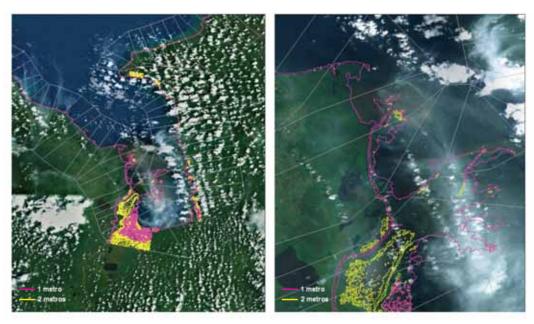

Fuente: Elaboración propia a partir de datos de STRM-90.

FIGURA 2.104
ISOLÍNEAS DE NIVEL PARA LAS COTAS 1 Y 2 M EN EL DELTA DEL RÍO GRIJALVA

Fuente: Elaboración propia a partir de datos de STRM-90.

FIGURA 2.105
ISOLÍNEAS DE NIVEL PARA LAS COTAS 1 Y 2 M EN EL DELTA DEL RÍO ATRATO

Fuente: Elaboración propia a partir de datos de STRM-90.

FIGURA 2.106 ISOLÍNEAS DE NIVEL PARA LAS COTAS 1 Y 2 M EN EL DELTA DEL RÍO AMAZONAS

Fuente: Elaboración propia a partir de datos de STRM-90.

4.6 Conclusiones

En este segundo documento del estudio regional se analiza el factor de vulnerabilidad y exposición de las costas de ALyC frente a las acciones costeras y sus cambios que puede provocar el cambio climático. Algunas de las variables que configuran esta caracterización de la vulnerabilidad de las costas de la región han sido las características de sus ecosistemas, la población y la superficie de terreno en la franja costera, infraestructuras (carreteras, ferrocarriles y producción portuaria), cultivos, superficie urbana, etc. La exposición de las costas ha sido analizada a través de la tipología de playas y las características de las mismas, registro de obras marítimas y longitud de costa urbanizada. Estas variables han sido estudiadas mediante sistemas de información geográfica y los datos se han recogido en unidades básicas de estudio que abarcan aproximadamente 5 km de línea de costa. Estos resultados han sido agregados a otras escalas espaciales, entre ellos los países de la región para realizar comparaciones entre los mismos.

Entre otras conclusiones merece la pena destacar:

a) El estudio utiliza unidades básicas de estudio de aproximadamente 5 km de línea de costa. Con estos polígonos se ha estudiado la franja costera de los diversos países hasta 20 km hacia tierra. Entre todos los países, una parte de ellos (Islas Vírgenes, Bahamas, Islas Turcas y Caicos, Saint Kitts y Nevis, Aruba, Montserrat, etc.) quedan analizados en el estudio más del 95% de la superficie del país con los polígonos propuestos. Esta característica hace que el estudio proporcione incluso mayor importancia para estas regiones insulares puesto que la mayor parte de su territorio se considera zona costera. En otros casos, como Argentina, México o Brasil, las unidades de estudio (por ende franja costera) suponen pequeños porcentajes de la superficie total del país. Hay que resaltar que en el caso de las Islas Turcas y Caicos prácticamente el 100% de la superficie del país se encuentra por debajo de la cota 10 m. En el caso de las Islas Caimán y las Bahamas, esta proporción supone más del 70% del país –cuadro 2.26–.

b) Se ha analizado la superficie de terreno desde la cota 0 hasta la 10 m. México, Brasil, Cuba y Argentina son los países que más km2 de territorio presentan por debajo de la cota 10 m, en especial los dos primeros. Sin embargo, en términos porcentuales al conjunto del territorio nacional, las Islas Turcas y Caicos, las Bahamas y las Islas Caimán destacan como los países con más superficie en zonas costeras de baja elevación. El análisis de la distribución de la superficie entre cada cota también resulta interesante observándose distinta distribución de áreas en distintos países.

c) Respecto a la población, Brasil es especialmente el país que mayor número de habitantes presenta en los primeros 10 m de elevación, seguido de México y Argentina. La distribución de población por cotas también muestra diferencias entre países. En términos relativos a la población de cada país, las Islas Turcas y Caicos, las Islas Caimán y las Bahamas concentran toda su población en los primeros 10 m de cota.

La mayor densidad de población en las zonas bajas costeras se encuentra en Barbados, Granada, las Islas Vírgenes de los Estados Unidos y Dominica. Esta variable representa la concentración de la población en los primeros metros de elevación de la costa y es de especial importancia para tener en cuenta en estrategias de adaptación.

- d) Los países más vulnerables por presencia de infraestructuras lineales en las costas son México, Brasil, Cuba, Bahamas y Argentina.
- e) La distribución de ecosistemas varía enormemente entre cotas y países. Se ha realizado una clasificación agregada de los ecosistemas en la región y se han valorado económicamente siguiendo criterios de valoración ampliamente usados. Brasil y México son los países donde se ha obtenido un mayor valor económico de los ecosistemas en magnitud absoluta, seguidos de Cuba, Colombia, Nicaragua y Honduras, todos estos países de mucha menor superficie que los dos anteriores.
- f) México y Brasil también son los países con más superficie cultivada en las zonas costeras de baja elevación. No obstante, en casos como las Bahamas, Islas Caimán, Suriname y Guatemala, gran porcentaje de los cultivos se encuentran por debajo de la cota 10 lo que hace que estos países sean especialmente vulnerables ante impactos en las zonas costeras.

Brasil, México, Argentina y la República Bolivariana de Venezuela también presentan más de 100 km² de ciudad por debajo de la cota 10 m. Las Bahamas, Cuba y Puerto Rico se sitúan en el entorno de 50 km² de trama urbana en el mismo rango de elevaciones.

Se ha realizado una representación espacial de los resultados obtenidos en unidades de 5 km a la escala de ALyC para obtener la distribución espacial de diversas variables. Además, se han incluido en el presente documento algunos mapas de inundación, población y otras variables por cotas en algunas islas y ciudades representativas.

Una parte principal del estudio es la determinación de la configuración de la costa para lo cual se han analizado las características de las playas y longitud de diques y frentes urbanos junto al mar. En países como Brasil, Argentina, Uruguay, Guyana, la República Bolivariana de Venezuela, Dominica, etc. gran parte de sus ciudades costeras están protegidas de las acciones costeras por playas, aumentando su vulnerabilidad frente a posibles afecciones a las mismas como la erosión costera.

Gran parte de las playas de ALyC se pueden considerar rectilíneas a efectos morfodinámicos. Sin embargo, una parte importante de las mismas, variable entre países debido a la distinta configuración de la costa, se pueden considerar encajadas y, por tanto, vulnerables frente a otros tipos de cambios en los agentes costeros.

Los deltas más importantes de la región, así como los corales también han sido contemplados en el estudio debido a su especial importancia como unidades singulares de la costa de ALyC.

5. Bibliografía

- Alongi, D.M. (2008), Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. *Estuarine, Coastal and Shelf Science* Volume 76, Issue 1, 1 January 2008.
- Anwar, M. (2009), The biology of coastal sand dunes. Oxford University Press, Oxford, 265 pp.
- Birkmann, J. (2006), *Measuring Vulnerability to Natural Hazards: Towards disaster Resilient Societes*. Jörn Birkmann (Ed.), United Nations University.
- Björk, M. y otros (Ed.), (2008), *Managing Seagrasses for Resilience to Climate Change*. IUCN, Gland, Switzerland.
- Borum, J. y otros (2004), European seagrasses: an introduction to monitoring and management. The M&MS project.
- Brown, B.E. (1997), "Coral bleaching: causes and consequences", Coral Reefs, 16.
- Brown, C. y otros (2006), *Marine and coastal ecosystems and human wellbeing*. Synthesis, UNEP-WCMC, Cambridge.
- Burke, L., E. Selig y M. Spalding (2002), *Reefs at risk in Southeast Asia*. World Resources Institute, Washington D.C.
- Burke, L. y J. Maidens (2005), *Arrecifes en Peligro en el Caribe*, World Resources Institute, Washington, D.C.
- Carpenter, S. (2003), "Regime Shifts in Lake Ecosystems: Pattern and Variation", *Excellence in Ecology*, Series 15. Oldendorf/Luhe: International Ecology Institute, Germany.
- CIA (Central Intelligence US Government) (2001), *World Factbook*. [digital version] http://www.cia.gov/cia/publications/factbook/index.html.
- CIESIN (Center for International Earth Science Information Network) (2005), *Gridded Population of the World and the Global Rural-Urban Mapping Project*, Palisades, NY: CIESIN, Columbia University, [digital version] http://www.sedac.ciesin.columbia.edu/gpw.
- _____(2002a), Country-level GDP and Downscaled Projections based on the A1, A2, B1, and B2 Marker Scenarios, 1990-2100, Palisades, NY: CIESIN, Columbia University, [digital version] http://www.sedac.ciesin.columbia.edu/mva/downscaling/ciesin.html.
- _____ (2002b), Country-level Population and Downscaled Projections based on the B2 Scenario, 1990-2100, Palisades, NY: CIESIN, Columbia University, [digital version]
- http://www.sedac.ciesin.columbia.edu/mva/downscaling/ciesin.html.

- Constanza, R. y otros (1997), "The value of the world's ecosystem services and natural capital", *Nature*, Vol. 387.
- De Lange, H.J. y otros (2009), "Ecological vulnerability in risk assessment A review and perspectives", *Science of the Total Environment*, doi:10.1016/j.scitotenv.2009.11.009.
- Donner, S.D. y otros (2005), "Global assessment of coral bleaching and required rates of adaptation under climate change", *Global Change Biology*, 11, 2251–2265, doi: 10.1111/j.1365-2486.2005.01073.
- Douglas, A.E. (2003), "Coral bleaching how and why?", Marine Pollution Bulletin, 46, 385-392.
- Fischlin, A. y otros (2007), "Ecosystems, their properties, goods, and services", *Climate Change 2007: Impacts, Adaptation and Vulnerability.* Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, 211-272.
- Freiwald, A. y otros (2004), *Cold-water coral reefs*. UNEP-WCMC, Cambridge, [digital version] www. unepwcmc.org.
- Gaffin S.R. y otros (2004), "Downscaling and geo-spatial gridding of socio-economic projections from the IPCC Special Report on Emissions Scenarios (SRES)", *Global Environmental Change*, Part A, Volume 14, Issue 2.
- Gewalt M. y otros (1996), EUROflood *Technical Annex 8. Economic Assessment of Flood Hazards*. Regional Scale Analysis-Decision Support System (RSA-DSS), München.
- Glynn, P.W. (1996), "Coral reef bleaching: Facts, hypotheses and implications", *Global Change Biology*, 2: 495-509.
- _____ (1991), "Coral bleaching in the 1980s and possible connections with global warming", *Trends in Ecology and Evolution*, 6, 175-179.
- Halpern, B.S. y otros (2007), "Evaluating and Ranking the Vulnerability of Global Marine Ecosystems to Anthropogenic Threats", *Conservation Biology*, 21(5): 1301-1315.
- Harrell S.Y. y M.G. Barron (2010), 'Predicting coral bleaching in response to environmental stressors using 8 years of global-scale data", *Environmental Monitoring and Assessment*. Volume 161, Numbers 1-4, 423-438.
- Hinkel, J. (2011), "Indicators of vulnerability and adaptive capacity: towards a clarification of the science-policy interface", *Global Environmental Change*, 21, 1, 198-208 | 10.1016/j.gloenvcha.2010.08.002.
- Hoegh-Guldberg, O. (1999), "Climate change, coral bleaching and the future of the world's coral reefs", *Marine and Freshwater Research*, 50, 839-866.
- Hogarth, P.J. (2007), "The biology of mangroves and seagrasses", *Biology of Habitats*, Oxford University Press, Oxford.
- Hughes T.P. y otros (2003), "Climate change, human impacts, and the resilience of coral reefs", *Science*, 301, 929-933.
- IHC-IH Cantabria (2010), *Implementación del plan marco de gestión de los espacios acuáticos de la red Natura 2000 en Cantabria*, Tomo I, Memoria litoral. Gobierno de Cantabria, Consejería de Desarrollo Rural, Ganadería, Pesca y Biodiversidad, Santander.
- IPCC (Interguvernamental Panel of Climate Change) (2007), *Climate Change-The Physical Science Basis*. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (ISBN 978 0521 88009-1 Hardback; 978 0521 70596-7 Paperback).
- Ippolito, A. y otros (2009), "Ecological vulnerability analysis: A river basin case study", *Science of the Total Environment*, doi:10.1016/j.scitotenv.2009.10.002.
- Jones, L.A., K. Hiscock, y D.W. Connor (2001), "Marine Habitats reviews. A summary of ecological requirements and sensitivity characteristics for the conservation and management of marine SACs", Joint Nature Conservation Committee, Peterborough, UK.
- Kaiser, M.J. y otros (2005), *Marine ecology: processes, systems and impacts*, Oxford University Press, Oxford.
- Lacoste, A. y R. Salanon (1981), Biogeografía. Elementos de geografía. Oikos-Tau, Barcelona.

- Levin, S. (1999), Fragile Dominion: Complexity and the Commons. Reading, MA: Perseus Books.
- Little, C. (2000), *The biology of soft shores and estuaries*. Biology of Habitats. Oxford University Press, Oxford, 252 pp.
- Liu, G., A.E. Strong y W.J. Skirving (2003), "Remote sensing of sea surface temperatures during 2002 barrier reef coral bleaching", EOS, *Transactions of the American Geophysical Union*, 84, 137-141.
- Luning, K. (1990), *Seaweeds. Their environment, biogeography, and Ecophysiology*. Wiley-Interscience publication. Stuttgart.
- Magrin, G. y otros (2007), "Latin America. Climate Change: Impacts, Adaptation and Vulnerability" Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 581-615.
- Meyer, V. (2005), Methoden der Sturmflut-Schadenpotentialanalyse an der deutschen Nordseeküste, Dissertation at the University of Hannover, UFZ-Dissertation 3/2005.
- Nakicenovic N. y otros (2000), Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge UK: Cambridge University Press, 599 pp.
- Sachs, J.D., A.D. Mellinger, y J.L. Gallup (2001), "The geography of poverty and wealth", *Scientific American*, 284: 62-67.
- Schaeffer-Novelli, Y., G. Cintron-Molero y M.L.G. Soares (2002), "Chapter Nine Mangroves as indicators of sea level change in the muddy coasts of the world". In: Muddy coasts of the world: processes, deposits, and function In: Y.W. Terry R. Healy, Judy-Ann Healy (Editor), *Proceedings in Marine Science*, Volume 4, 2002, pp. 245-262.
- Schanze, J. (2002), "Nach der Elbeflut 2002: Die gesellschaftliche riskovorsorge bedarf einer transdisziplinären Hochwasserforschung", GAIA 11(4), pp. 247-254.
- Schneiderbauer, S. y D. Ehrlich (2004), *Risk, hazard and people's vulnerability to natural hazards. A review of definitions, concepts and data.* European Commission. Joint Research Centre. Luxemburgo. ISBN 92-894-8732-1.
- Sheppard, C.R.C. (2003), "Predicted recurrences of mass coral mortality in the Indian Ocean", *Nature*, 425, 294–297.
- Sheppard, C.R., S.K. Davy y G.M. Pilling, (2009), *The Biology of Coral Reefs*, Oxford University Press, Oxford, 339 pp.
- Skirving, W.J. y otros (2004), *NOAA's Coral Reef Watch Hotspot and DHW products: trends in the extent of mass bleaching*, 10th International Coral Reef Symposium, Okinawa, Japan, June 28–July 2.
- UICN (Unión Internacional para la Conservación de la Naturaleza) (2001), *Categorías y Criterios de la Lista Roja de la UICB: Versión 3.1*, Comisión de Supervivencia de Especies de la UICN. UICN, Gland, Suiza y Cambridge, Reino Unido, ii+33pp.
- UNEP (United Nations Environment Programme) (2008), *In Dead Water*, Merging of climate change with pollution, over-harvest, and infestations in the world's fishing grounds, Nellemann, C., S. Hain, y J. Alder. (Eds.).
- _____(2006), The state of the marine environment-trends and processes, United Nations Environment Programme and the Global Programme of Action for the Protection of the Marine Environment from Land-based Activities (GPA) of the United Nations Environment Programme (UNEP), The Hague.
- _____ (2000), Sensitive ecosystems analysis. A review of the vulnerability of terrestrial and marine ecosystems to climate change: 1999-2000, [digital version] http://www.unep-wcmc.org/climate/impacts.aspx.
- Van Dyke, F. (2003), Conservation Biology. Foundations, Concepts, Applications. Mc-Graw-Hill, New York. Van Vuuren, D.P., P.L. Lucas, y H.B.M. Hilderink (2006), *Downscaling drivers of global environmental change Enabling use of global SRES scenarios at the national and grid levels*, Netherlands Environmental Assessment Agency (MNP).

- Yepes V. y J.R. Medina (2005), "Land Use Tourism Models in Spanish Coastal Areas. A case study of the Valencia region", *Journal of Coastal Research*, SI 49, 83-88.
- Walter, H. (1994), Zonas de vegetación y clima, Ed. Omega, Barcelona
- Wellington, G.M. y otros (2001), "Crisis on coral reefs linked to climate change". *EOS, Transactions of the American Geophysical Union*, 82, 1-6.
- Wilkinson, C. (2008), *Status of Coral Reefs of the World:* 2008. Global Coral Reef Monitoring Network and Reef and Rainforest Research Center, Townsville, Australia.
- _____ (2002), "Status of coral reefs of the world: 2002. United States coral reef taskforce", *Australian Institute of marine Science*, Townsville, Australia.
- Williams, L.R.R. y L.A. Kapustka (2000), "Ecosystem vulnerability: a complex interface with technical components. *Environmental Toxicology and Chemistry*; 19:1055-8. 55-8.
- Yepes V. y J.R. Medina (2005), "Land Use Tourism Models in Spanish Coastal Areas. A case study of the Valencia region", *Journal of Coastal Research*, SI 49, 83-88.
- Zhang, K., B.C. Douglas y S.P. Leatherman (2004), "Global Warming and coastal erosion", *Climate Change*, 64, 41-58.

